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Abstract

MacroComponents defined as software components that run in isolated environ-
ments but without the full foundations of the traditional software stack is an
alternative, lightweight and composable approach to virtualization. GuestVM,
which is a bare-metal, meta-circular Java Virtual Machine, is the core of the
MacroComponents in this work. It sits directly between Xen hypervisor and
OSGi applications to play a role as an operating system as well as a JVM.
GuestVM has the potential for good performance because of its minimal, all-
Java software stack and the elimination of traditional operating system layer.
Nevertheless, GuestVM performs very poor in reality according to the previous
work. The main aim of this work is to analyze and figure out the performance
bottlenecks and remove them to improve GuestVM’s performance, and thus
make it a possible solution for MacroComponents in practice.

Through the evaluations, GuestVM does not add overhead to Maxine in terms
of memory access, and the performance is comparable to HotSpot JVM without
considering the optimization of HotSpot JVM’s working memory. By optimiz-
ing code, giving sufficient file system buffer cache and implementing a prefetch-
ing mechanism, the I/O performance of GuestVM on average can be improved
to only 50% slower than HotSpot JVM (even outperforms HotSpot JVM in
many cases), and 4 times faster than Maxine. To run the OSGi-based Macro-
Components, this work provides a design for efficient communications between
GuestVM domains by using shared memory as connection channels, and presents
a monitoring and management GUI tool to help developers to manipulate the
MacroComponents in a graphical way.
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Chapter 1

Introduction

1.1 Motivation

As opposed to a monolithic architecture, where the smallest component is the
whole application, modularity is to design software as distinct manageable com-
ponents. Modularity can be done at many levels. Modularized source code
(e.g. classes) can be compiled together into one executable; at a higher level,
an executable can be used as a shared library. An even higher level is to mod-
ularize applications. Modularization on the level of applications means that
an application is consisted of collaborating but autonomous sub-applications
(modules), and functionalities can be added or removed by installing or unin-
stalling modules dynamically at runtime rather than at compile time. Such
systems are called extensible component platforms [1] (The OSGi framework is
a widely adopted instance). When it comes to enterprise applications, a higher
modularization level is needed: the level of JVMs isolation.

Since enterprise applications are huge and highly complex, they have the re-
quirement of performance isolation. Performance isolation means that the per-
formance of a component of an application should not be affected by the other
components or other applications [2]. The Java Virtual Machine (JVM) [3]
is an abstract computing machine that runs compiled Java programs to make
Java applications hardware- and operating system- independent. However it is
designed for standalone applications, and all Java components that run on the
same JVM share time and space resources. Hence when it comes to extensible
component platform applications, such as OSGi applications where each appli-
cation can include any number of modules and each module can run any number
of Java programs in the JVM, current JVMs are not able to isolate components
from each other. For example, misbehaving applications could freeze the com-
plete system by consuming too much CPU or block resources or impact other
components by blocking resources or modifying shared variables [4]. The best
isolation is to run each component as the only application on a separate ma-
chine. But this causes a waste of resbources due to hardware underutilization.
Virtualization provides a solution by allowing to run multiple virtual machines
(VMs) concurrently on the same physical machine in isolated environments,
thus grants the component exclusive access to time and space resources. Vir-
tualization here means that a system pretends to be two or more of the same
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system.

Though virtualization gives a solution to performance isolation so that improves
system utilization and security, it brings overhead. To allow multiple VMs to
run on one physical host, system virtualization provides an isolated duplicate of
the real machine for each VM, including full operating systems and a complete
software stack, which results in a large system that consumes resources. But
much of this foundation is not strictly necessary. To reduce the overhead, the
concept of MacroComponent is introduced [5]. MacroComponent is an alterna-
tive, lightweight approach to virtualization. Basically, it reduces the overhead by
eliminating the need of an operating system as well as making the software stack
smaller. In system composed of MacroComponents, software components run in
isolated environments from the rest of the system, but without the full conven-
tional foundations, that is operating system and runtime environment. In this
work, the MacroComponent is designed that runs the bare-metal Java Virtual
Machine (GuestVM) directly on the hardware hypervisor (Xen), and the JVM
supports to run extensible component platform applications, i.e. OSGi bundles
here. R-OSGi is a middleware layer based on OSGi handling the communication
between the isolated MacroComponents. Figure 1.1 shows the architecture of
this MacroComponent.

Figure 1.1: Architecture of MacroComponents

Since the primary goal of MacroComponents is to reduce the overhead brought
by virtualization, its practical performance is a vital aspect that should be
guaranteed.

In theory, software components with a small software stack should outperform
the traditionally virtualized one with the complete foundations. But unfortu-
nately, as the key part of the MacroComponent, GuestVM performs much worse
than expected. From Schwammberger’s work [2], GuestVM performs poorly
when running SPEC JVM98 benchmarks. While Maxine is only a little slower
than Sun’s HotSpot JVM, GuestVM performs 8 to 9 times slower on average
and is 26 times slower in the worst case compared to HotSpot JVM.

This work aims to analyze GuestVM performance and find which parts pose the
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performance bottlenecks and solve the problems to improve the performance,
and then to make GuestVM a practical component of MacroComponents. In ad-
dition, to run multiple distributed OSGi-based MacroComponents, an efficient
approach for communications between MacroComponents should be provided.

1.2 Related Work

MacroComponents introduce a concept for providing performance isolation with
small overhead. GuestVM as a main part of MacroComponents in this work
provides a complete software stack to potentially give high performance to spe-
cialized applications by removing the extraneous stuff of operating systems for
general use. There are some other works related to this purpose. IBM Li-
bra [6] gives another approach that relies on hypervisor (specifically, Xen) to
transform existing software systems into specialized, high-performance systems
without replacing the entire operating system. It is an execution environment
specialized for running particular classes of workloads on the IBM’s J9 JVM.
In addition, the performance isolation could be achieved via operating system-
level virtualization as FreeBSD jail [7]. It allows administrators to partition a
FreeBSD-based system into several independent subsystems named jails, which
are sealed from each other, thus providing an additional level of isolation and se-
curity. Solaris 10 Zones [8] is a further development of the idea of BSD jails. It
gives an environment similar to virtual machine by creating an isolated process
tree, but with minimal overhead.

1.3 Outline of the Thesis

Chapter 2 starts with some background on each component in the software stack
of MacroComponents in a bottom up order. Chapter 3 presents the evaluations
and improvement of GuestVM performance. Chapter 4 describes a design for
communications between GuestVM domains and presents a GUI tool for moni-
toring and managing a MacroComponents system. Chapter 5 presents the idea
of future work and concludes this thesis.
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Chapter 2

Background

GuestVM [9] is the core component of the MacroComponent in this work. It is
an experimental project from Sun that provides a lightweight runtime platform.
GuestVM is an implementation of a Java virtual machine that built on Maxine
virtual machine. It runs directly on the hypervisor paravirtualization API with-
out the traditional operating system layer. Figure 2.1 presents the comparison
between conventional software stack and GuestVM stack. GuestVM aims at
building an all-Java software stack for server-side Java applications.

Figure 2.1: Conventional Stack vs. GuestVM Stack [10]

While conventional JVMs are written in C or C++, Maxine is implemented
in Java, the same language that it interprets, i.e., a meta-circular JVM. Con-
ventional JDK Platform libraries are implemented by JVM native code and
operating system code layers. Maxine is a replacement for HotSpot JVM. It is
fully JDK 6 compatible. In GuestVM, HotSpot JDK is unchanged in essence
except for the native methods that depend on the VM details [10].
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The following sections present every component in GuestVM stack in more
detail, in a bottom up order.

2.1 Xen

Traditionally, an operating system, which acts as an intermediary between ap-
plication programs and the computer hardware, runs directly on hardware and
has exclusive access to all hardware devices. Because most hardware does not
natively support being accessed by multiple operating systems, to run several
virtual machines on one computer in parallel, where each virtual machine could
run a separate operation system instance, it is necessary to introduce a soft-
ware layer to schedule and allocate sharing resources (space and time), manage
the hardware access, and monitor guest operating systems. Hypervisor [11] is
such a layer, also known as virtual machine monitor (VMM ). It sits between
hardware and guest operating systems, and provides each guest with its own
virtual device. Xen [12] is a bare metal (or native) hypervisor. In contrast to
hosted hypervisors running within a conventional operating system, bare metal
hypervisors run directly on the host’s hardware.

Xen runs guests in domains, which encapsulate a complete running virtual envi-
ronment. The privileged domain that can access the hardware is called Domain
0 (dom0 ). It is the first guest to run when Xen boots, and its most obvious task
is to handle devices. In contrast, other domains are referred to as Domain U
(domU ), where “U” stands for unprivileged. Communication between domains
is by means of memory sharing. Figure 2.2 gives an example to show how an
application in domU accesses the physical hardware.

When a packet is sent by an application running in a domU guest, it first goes
through the TCP/IP stack as normal. Unlike a normal network interface driver,
the bottom of the stack is a split device drive that puts the packet into some
shared memory. The other half of the split driver, running on the dom0 guest,
reads the packet from the shared memory, and inserts it into the firewalling
components of the operating system that route it as it would a packet from
a real interface. Finally, the packet is routed to the real device driver, which
should already exist in the dom0 operating system. This is able to write to
certain memory reserved for I/O. The physical network device then sends the
packet [13].

The virtualization approach taken by Xen just brings a minimal performance
overhead, but without sacrificing functionality. In the experiments for evaluat-
ing the overhead of the various virtualization techniques relative to running on
the “bare metal”, Xen performs just the same as Linux in the best case (The
SPEC CPU2000 Integer suite [14]), and about 8% overhead at worst (Post-
greSQL running the OSDB multiuser Information Retrieval (IR) benchmark);
normally, the overhead is around 3% ~ 4%. [15, 16, 17] The evaluation shows
that Xen considerably outperforms than other VMMs such as VMware work-
station.

Besides excellent performance, Xen also provides sufficient isolation. In the
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Figure 2.2: The travel path of a packet sent from an unprivileged guest [13]

experiment, which ran four domains concurrently, while two of them ran bench-
marks, and the other two ran a disk bandwidth hog and a fork bomb in the
background respectively, the two antisocial domains contributed only 4% per-
formance degradation. This overhead comes from extra context switches and
cache effects [15].

To obtain high performance and strong resource isolation, the virtualization
technique paravirtualization is necessary. Paravirtualization is in contrast to full
virtualization. Full virtualization provide a complete simulation of the under-
lying hardware, thus allow unmodified operating systems to be hosted without
aware that they are being virtualized. This approach brings a number of draw-
backs such as cannot see the real hardware, problematic for certain privileged
instructions (e.g., traps), no real-time guarantees, and so on, hence results in
inferior performance levels compared to paravirtualization [15, 18]. Paravirtu-
alization avoids these drawbacks by presenting a virtual machine abstraction
that is similar but not identical to the hardware. This approach provides some
exposures to the underlying hardware, thus improves performance. Paravirtu-
alization needs modifications to the operating systems, but no modifications to
applications [15].

2.2 Maxine

Conventional virtual machines are written in C or C++, which have drawbacks
such as lack of modularity, low-level programming, high potential for hard-to-
find bugs, intricate interdependencies, etc. As existing virtual machines have
progressed in performance and functionality, their implementations have become
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unmanageably complex [19].

Maxine [20] is a meta-circular Java Virtual Machine mostly implemented in
Java, where “meta-circular” means the VM is written in the same language it
executes, that is no VM / application code distinction. It applies Java method-
ologies and tools (IDEs) to JVM development to avoid the drawbacks caused
by the low-level languages, and then makes VM development more productive.

Maxine is an ongoing project that still has many issues such as unimplemented
JVM_* C functions, GC bugs, etc.. According to the test results from Sun,
the performance of Maxine is slower than HotSpot by a factor of 5 on average.
By using SPEC JVM98, Maxine passed all the benchmarks and is 1.6 to 5
times slower than HotSpot; in the tests of DaCapo, Maxine passed 5 out of 12
benchmarks, and is 5 to 10 times slower than HotSpot [19].

2.3 GuestVM

GuestVM builds a complete software stack, implemented entirely in Java and
hosted on Xen, with just the thinnest layer of C code in between. GuestVM is
lightweight. It only needs 70 megabyte of disk space (63 megabyte for Maxine,
1 megabyte for GUK, and 6 megabyte for GuestVM itself) and additional 72
megabyte for a Java Runtime Environment, whereas a minimal Ubuntu installa-
tion, which provides only a command line interface, still needs 750 megabyte, let
alone the full operating systems with graphical user interfaces that take up eas-
ily a couple of gigabyte. It aims at giving Java applications just what they need.
Notice that GuestVM is a server-side project, i.e., headless (headless mode is a
system configuration in which the keyboard, mouse or display device is lacking
[21]), so it does not support Abstract Window Toolkit (AWT ) in java. Typically,
the situation for a production server that is running a big java application is
that there is just the operating system and the java application. Basically, it is
a one-to-one relationship, although a few other processes related to networking
may exists. A single huge application can be spread logically over multiple ma-
chines, if one machine is not big enough. In this context, the operating system
is just doing one thing - supporting the Java application. Java’s needs are very
specific whereas the operating system is very general. Therefore, GuestVM cuts
the extraneous stuff to minimize the consumption of server resources and makes
better use of the machine.

Conventional Java platform libraries are implemented in C/C++ that brings
some issues. For example, crossing layers written in different programming lan-
guages at run-time can be expensive; dynamic compiler does not have visibility
into all layers; development environment is complicated, and so on. GuestVM
gives the potential advantages: improved performance, enhanced developer pro-
ductivity, better thread management, and easier administration [9]. All because
the entire stack is implemented in Java.

GuestVM consist of three parts: Maxine VM that has been introduced in section
2.2, the Guest VM Microkernel (GUK for short), and GuestVM itself.

GUK is a derivative of the Xen Minimal OS, Mini-OS, and sits between Xen and
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the GuestVM Java layer. It is a quite thin (about 850 kilobyte) layer written
in C that is used to support the GuestVM Java platform. It is in charge of
microkernel thread scheduling, memory management, and block device access
in fairly simple ways, while smarts are at the Java level. GUK requires a 64-bit
x86 machine and hypervisor.

GuestVM contains four main components: GuestVM, GuestVMNative, JN-
odeFS, and YANFS. GuestVMNative is a native shim between GuestVM as
well as Maxine Java code and the microkernel, that is, simply maps the certain
GuestVM and Maxine functions to GUK functions. JNodeFS is an ext2 file sys-
tem implemented in Java from the JNode (Java New Operating System Design
Effort) [22]. YANFS (Yet Another NFS) is a Java implementation of NFS from
[23]. GuestVM is the main body of Java code. It provides an implementation
of the Java thread scheduler and defines a virtual file system (VFS) interface
that corresponds to the native method layer.

2.4 OSGi

The OSGi [24] framework is a Java-based, centralized service-oriented platform
that is being widely used as an execution environment for developing extensible
applications. The key features of OSGi can be summarized as: modularization,
runtime dynamic, and service orientation, which are handled by the module
layer, the life cycle layer and the service layer respectively.

The module layer is the foundation of OSGi Framework that defines a modu-
larization model for Java by introducing the concept of bundle, a module unit
that explicitly defines its dependencies to other modules and its external API
via additional meta information. The dependencies and life cycle of bundles are
managed by the life cycle layer that defines how new bundles are added and
how existing bundles are started, stopped, updated and removed dynamically
at runtime.

The service layer connects bundles in a dynamic way. In the OSGi model, any
Java object can be published as a service to be used by other bundles. A service
is always defined by a Java interface that is separated from its implementation
to make bundles loosely coupled. This approach allows developers to bind to
services only through interface, thus the implementation can be exchanged even
at runtime. The OSGi framework maintains a central registry for bundles to
publish their services, and retrieve and use services provided by others.

Because of the dynamic nature of the OSGi service model, the changes of the
state of a service require to be tracked. The typical pattern of service usage is
to listen to service events (add / remove / stop / update services) and react, for
example, disable a certain bundle when it becomes unavailable. Traditionally,
each event sources maintains its own registry of subscribed listeners and sends
events to all subscribers as the events take place. The OSGi white pattern
[25] provides a simpler and more efficient way by using OSGi service registry.
Instead of dynamically track all sources of events, listeners register themselves as
a service with the OSGi framework and implicitly acquire a global subscription
to all existing and future event sources.
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2.5 R-OSGi

R-OSGi [26, 27] is a middleware layer on top of OSGi. It enables the develop-
ers to turn the centralized OSGi implementations into distributed applications
transparently using the same modularity features of OSGi. It does not change
the OSGi framework implementation and makes seamless embedding meaning
that existing OSGi applications can be distributed using OSGi without modifi-
cation. All that a service provider has to do is registering a service for remote
access, and then service customers can connect to the service provider to get
access.

When a bundle requests a service form a remote peer, R-OSGi retrieves the ser-
vice in the distributed service registry which is based on SLP [28]. If the service
is found, the client generates a local proxy dynamically. The proxy redirects
service calls to the original remote service and sends the method response back
to the local client. To a client side, the proxies behave as a local service.

R-OSGi communications are messaged-based. By default, a network channel in
R-OSGi is a persistent TCP connection, with a lightweight binary protocol over
it. To reduce the overhead for TCP handshake, it is kept open as long as traffic
exists within the timeout.

R-OSGi is remarkably lightweight and efficiency. It has a small footprint and
its performance is comparable to RMI and two orders of magnitude faster than
UPnP.



Chapter 3

GuestVM Performance

3.1 Test Setup

All the experiments run on a computer with Intel(R) Core(TM)2 Quad CPU
Q9400 @ 2.66Hz and 4GB Memory. The operating system is Ubuntu 2.6.24-4.6-
generic with the Linux 2.6.24-27-xen kernel and has Sun’s HotSpot JDK_1.6.0_15
installed running in server mode. The number of CPUs allocated to the GuestVM
domain is 1; the initial domain memory is 1GB and the maximum domain
memory is 2GB; one virtual disk is attached to domain sized 1GB (except in
the experiments that read 1GB file from disk, where the virtual disk size is
2GB). The hypervisor layer is Xen-3.2.1. The GuestVM version is 0.2.4, which
is identified by guestvm repository version f545552add0e, guk repository version
db9dad98b331, and compatible Maxine version cf1c5f6686d8.

3.2 Running SPEC JVM98 Benchmarks

Theoretically, GuestVM has the potential to give better performance because
of lightweight and all-Java software stack. But whether there is a performance
benefit is an open question. Computer science’s intuition about performance
is poor. The reasons for this can range from insufficient understanding of the
complicated system, to silly coding mistake [29].

Figure 3.1 is from [2]. It presents the comparison of running specJVM98 [30]
on different JVMs. From this Figure, Maxine performs excellent and is only
slightly slower than Sun’s HotSpot [31] JVM. As the groundwork of GuestVM,
Maxine is a good prerequisite for performance. Whereas GuestVM is 8 to 9
times slower than Maxine on average and is up to 26 times slower than its fastest
opponents (HotSpot JVM server). Its runtime for _200_check and _228_jack
failed respectively with an array out of bounds exception and a compilation
error.

This experiment has been repeated in this work, but got different measurements
from the previous tests. Since GuestVM does not support GUI, all the tests in
this work for running SPEC JVM98 benchmarks are carried out from the com-
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Figure 3.1: specJVM98 on different JVMs [2]

mand line [32], including the ones for HotSpot JVM and Maxine VM, because
the results from GUI are not strictly identical to the ones obtained from the
command line. Listing 3.1 and Listing 3.2 give the way to run JVM98 bench-
marks in Maxine and GuestVM respectively. Figure 3.2 shows the results of
running SPEC JVM98 on different JVMs and compared them.

Listing 3.1: Running SPEC JVM98 Benchmarks on Maxine

# cd $JVM98_DIR

# ./ shrc
# $MAXINE_DIR/bin/max vm −cp $JVM98_DIR SpecApplication [ size ]

benchmark

Listing 3.2: Running SPEC JVM98 Benchmarks on GuestVM

# cd $GUESTVM_DIR/GuestVMNative
# bin/run_benchmarks −cp /guestvm/java/jvm98 SpecApplication [ size ]

benchmark

_200_check is used to verify the validity of the JVM but not used in the per-
formance metrics of the system. It consists of a set of tests to test logical,
arithmetic, shift, and so on operations, as well as perform bounds checking
on array indexing. Maxine and GuestVM failed it because of an index out of
bounds exception.

From the benchmark results, Maxine VM does not perform as well as showed in
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Figure 3.2: specJVM98 on different JVMs

[2]. In the test _227_mtrt, GuestVM is about 50 percent slower than Maxine.
_227_mtrt is a ray tracer that creates a scene depicting a dinosaur, and uses
a multi-threaded driver, where the threads render the scene from an input file.
Except _227_mtrt, the time used by GuestVM and Maxine are very close for
running all the other programs in the benchmark suite. In _228_jack, which
failed in the tests of [2], GuestVM is even a bit faster than Maxine. More
details of the benchmark information are available in [33].

Compared to HotSpot JVM, GuestVM performs 44 percent slower in the best
case (_209_db), and 14 times slower at worst (_228_jack). In other cases,
GuestVM is 2 to 9 times slower than HotSpot JVM.

SPEC JVM98 Benchmark Suite is used to verify the validity and measure per-
formance of JVMs. More than 70 percent of its instructions are about load and
store items on to the stack, alter the stack’s contents, and accesses to object
fields (memory accesses); more than 15 percent are about arithmetic operations
logical statements [33], while it tests nothing about I/O. GuestVM is more than
a conventional JVM. It runs directly on hypervisor, thus besides using Maxine
to replace the conventional JVM layer, it takes over the role of operating systems
as well. For this reason, SPEC JVM98 benchmark is not sufficient to measure
GuestVM’s performance all around such as larger I/O performance. Therefore,
the following sections give a comprehensive analysis of GuestVM performance
to figure out which parts of GuestVM pose the performance bottleneck and fix
them.
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3.3 GuestVM Performance Analysis and Improve-
ment

GuestVM neither provides any monitoring tool as Linux, like iostat, vmstat,
free, uptime, etc., nor has any profiler, i.e., performance analysis tool. Existing
profilers, such as OProfile [34], a system profiler for Linux, are not supported
by GuestVM. Since GuestVM plays two roles in the software stack of Macro-
Components: as a JVM and as an operating system, to figure out the sources of
performance problems, experiments are designed in respect of memory accesses
and I/O.

Without specially mentioned, all the experiments in the following sections con-
sist of three parts: set up, run, and tear down, where run is the real experiment
to execute, set up is to initialize the required environment, and tear down is to
clean the set up, e.g., close the opened file system, and check whether the ex-
periment has been executed successfully. Every experiment needs to be warmed
up, that is, run the experiment for multiple times before the measurements
being recorded. The final experiment result is a measurement whose standard
deviation is less than ten percent of the mean value.

3.3.1 Memory Performance

Memory access performances were evaluated by measuring elapsed time for al-
locating, reading and writing memory. The task of memory allocation [35]
consists of finding a block of unused memory of sufficient size. The dynamic
memory allocation algorithm used to organize the memory area and allocate
and deallocate chunks can impact performance considerably.

Memory Allocation

The memory allocation time was evaluated by seven sets of data obtained from
allocating 1 kilobyte to 200 megabyte data to memory on different JVMs. Al-
locating more than 300 megabyte data to memory failed for an out of memory
error. In Java, memory is allocated only to objects. There is no explicit alloca-
tion of memory (such as malloc), but only the creation of new objects. Thus,
memory allocation is via the following code:

Listing 3.3: Code for Memory Allocation

memory = new byte [ MEM_SIZE ] ;

The conclusions drew from the seven sets of measurements are more or less
identical: the time used for memory allocation on Sun’s HotSpot JVM, Maxine
VM, and GuestVM, is close. GuestVM performs even a bit better than HotSpot
JVM in some cases. Figure 3.3 gives two typical examples of the seven results.
Figure 3.4 uses logarithmic coordinates to present all the measurements for
allocating different size of data to memory when running the tests on different
virtual machines.
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Figure 3.3: Time used for allocating 100KB and 100MB data to memory

Figure 3.4: Time used for allocating different size of data to memory
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Memory Read

Memory reading time was evaluated by five sets of measurements obtained from
randomly reading 10 kilobyte to 20 megabyte data from memory. The time
for reading 1 kilobyte memory is hard to converge. No valid result could be
obtained from 20 times tests on HotSpot JVM, where valid means the standard
deviation of the measurements is less than ten percent of the mean value. Tests
for reading more than 50 megabyte memory failed with out of memory errors.
The memory reading performance was tested by the code in Listing 3.4, where
the variable indices is an array holding MEM _SIZE random integers ranged
from 0 to MEM _SIZE. The variable memory and data are declared in two ways:
common declaration without the keyword volatile and with volatile (Shown in
Listing 3.5). The variable memory is stored in the heap as a byte array; whereas
the variable data is a primitive type that holds the value directly instead of a
reference, and it is stored on the stack [36]. Because stack that has direct support
from the processor via its stack pointer is extremely fast and efficient for storage
access, variable data as a primitive type can minimize the influence of memory
writing in the tests for memory reading. Figure 3.5 presents two specimens of
the five sets of measurements. Figure 3.6 uses logarithmic coordinates to show
all the results for randomly reading different size of memory data on HotSpot
JVM, Maxine and GuestVM.

Listing 3.4: Code for Reading Memory

for ( int i = 0 ; i < MEM_SIZE ; i++) {
data = memory [ indices [ i ] ] ;

}

Listing 3.5: Variable Declaration in Two Ways

private byte [ ] memory ;
private byte data ;

OR

private volat i le byte [ ] memory ;
private volat i le byte data ;

From Figure 3.5 and 3.6, the memory reading performance of HotSpot JVM can
be degraded by the keyword volatile by a factor of 4 to 7. Whereas the time used
by Maxine and GuestVM is very close and is completely not affected by volatile.
Without the impact of volatile, HotSpot JVM performs up to 14 times faster
than Maxine and GuestVM, and 4.5 times on average as the memory data to
read is larger than 1 megabyte. In the tests declaring memory and data variables
volatile, HotSpot JVM can perform at most 2 times as fast as Maxine and
GuestVM; as the size of the memory to read growing, the performance advantage
of HotSpot declines, and in the cases reading more than 10 megabyte memory
data, Maxine and GuestVM can be even 10 percent faster than HotSpot.

Declaring a volatile Java field means that all reads and writes will go straight to
main memory, instead of using a cache value from working memory. Java Main
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Figure 3.5: Time used for randomly reading 10KB and 10MB data from memory

Memory (also known as Java Heap Memory) is the memory area used by JVM
for dynamic memory allocation. All variables and objects reside in the main
memory and are shared between all threads. To optimize performance, every
thread has a working memory (an abstraction of caches and registers), in which
it may hold its own working copy of variables. As a thread executes a program,
it operates on these working copies rather than accessing the main memory [37].

JVM (specifically HotSpot) uses memory barrier instruction to prevent the
volatile variables from storing in working memory. When applied to a field, the
Java volatile guarantees that two different threads always see the same value of
a certain variable at any moment, but at the same time, it gets rid of the opti-
mization of JVM and adds overhead caused by flushing cache and writing data
back to memory each time after the values of variables are modified [37, 38].

The memory reading time used by Maxine and GuestVM is not influenced
by the keyword volatile. This means it is not supported by Maxine to raise
efficiency through using working memory as cache for each thread. The reason
is that Maxine uses read/write barriers when accessing memory except garbage
collector (GC). Maxine defines Reference as well as Grip as a runtime value
of type “java.lang.Object”. They are almost the same except that Reference
access operations may incur barriers. The mutator refers to objects and parts
thereof by using Reference, whereas the GC uses grips instead to avoid barrier
[19].
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Memory Write

The design for memory writing experiments is similar to that of the memory
reading ones. The memory writing performance was tested via the code in
Listing 3.6, where the variable indices is an array holding random integers and
the variable data is a random byte. Variable declarations are the same as
memory reading experiments shown in Listing 3.3. The size of the memory to
write ranges from 10 kilobytes to 20 megabytes. The time for writing 1 kilobyte
memory is difficult to converge as reading, and writing more than 50 megabyte
memory failed because of out of memory. Figure 3.7 shows two representative
examples from five set of measurements for randomly writing different sizes of
data to memory on different JVMs, and Figure 3.8 presents all the results in
logarithmic coordinates.

Listing 3.6: Code for Writing Memory

for ( int i = 0 ; i < MEM_SIZE ; i++) {
memory [ indices [ i ] ] = data ;

}

Figure 3.7: Time used for randomly writing 10KB and 10MB data from memory
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Figure 3.7 and 3.8 shows that the memory writing performance of Maxine and
GuestVM are very close as memory reading. In respect of HotSpot JVM, the
impact of volatile on writing is less than on reading. HotSpot using volatile is
about twice as slow as without using it as writing a small amount of data (10
kilobyte); when writing larger size that more than 1 megabyte, volatile hardly
enhances memory writing performance. Maxine and GuestVM are up to 7 times
as slow as HotSpot JVM without the influence of working memory. As the size
of memory to write increasing, the gap can be decreased to 1.5 times.

To sum up, in respect of accessing memory, GuestVM performs extremely close
to Maxine. GuestVM builds on Maxine, uses Maxine’s implementation of the
Java memory model, and does not add overhead to Maxine in terms of memory
access. Without considering the optimization of working memory (i.e., using
volatile to remove the influence of cache), GuestVM performs practically as
excellent as HotSpot JVM on average in terms of allocating and reading memory.
Regarding writing memory, GuestVM is 50% times slower than HotSpot JVM
at best.

3.3.2 I/O Performance

The experiments for reading disk use Java FileInputStream to read the contents
of a file as a stream of bytes. The performance is evaluated from eight sets of
experiments that read different sizes of files ranged from 1 kilobyte to 1 gigabyte
from disk. All the results are shown in Figure 3.10 using logarithmic coordinates.
To make the illustration clear, Figure 3.9 gives two sets of typical results. The
experiment for reading 10 megabyte data running on GuestVM did not converge
in 20 times execution, where converge means the standard deviation is no larger
than 10 percent.

Figure 3.9: Time used for reading files sized 1MB and 200MB from disk
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From the results of experiments, the I/O performance of GuestVM is very poor.
GuestVM performs 2.5 times slower at best for reading a file of 1 kilobyte
and 100 times slower in the worst case for reading a file of 100 kilobyte. On
average, GuestVM performs slower than HotSpot JVM by a factor of 25, while
Maxine performs slower approximately by a factor of 10. The time used by
Maxine is proportional to the size of a file to read; the time used by GuestVM
is proportional to the file size when the size is larger than 100 kilobyte; whereas
the performance of HotSpot JVM decreases as the size of data to read increasing
except for the files larger than 100 megabyte. The advantage of HotSpot for
reading small size of data from disk could benefit from a more sophisticated
implementation of cache hierarchy in Java memory model.

Reclamation of file space is a future work of GuestVM. The delete operation
can only remove the file entry, but cannot release the space. Hence, the tests
that may runs tens of thousands of times to get a reasonable value cannot be
handled when writing large size data.

Based on the software stack comparison between classic and GuestVM as shown
in Figure 2.1, the performance overhead may reside in Maxine, GuestVM file
system, and / or Guest VM Microkernel (GUK).

Maxine is a replacement of HotSpot JVM on Linux. In the experiments, they
were both running on the same operating system. But Maxine is about 10 times
slower for the disk reading. If the I/O implementation of GuestVM is based
on Maxine, Maxine is not a guaranteed prerequisite for the good performance
of GuestVM. From Figure 3.10, when reading a small file that is no larger
than 10 kilobyte, GuestVM can perform even better than Maxine. This could
benefit from the smaller software stack of GuestVM compared to Maxine, or
the GuestVM’s I/O could be independent of Maxine. Actually, GuestVM has
re-implemented the native methods that depend on the VM details. By tracing
the call tree of reading disk, the procedure that consists of locating the data to
read and fetching them from the disk to a read buffer has nothing to do with
Maxine. The only thing Maxine involved is to copy the data in read buffer to a
return array. Thus, the Maxine’s impact on the I/O performance of GuestVM
is very limited.

GuestVM is a bare-metal JVM that runs directly on Xen’s hypervisor without
requiring an operating system. The role as an operating system is taken over
by GuestVM Microkernel. Operating system performance could be affected by
multiple factors, for instance, the CPU scheduler, the virtual memory manager
and so on [39], whereas there is hardly any profiling or performance monitoring
tool for analyzing or tuning these subsystems in GuestVM, thus RDTSC (read
time-stamp counter) [40] instruction was introduced to GUK to trace the CPU
clocks used by each set of statements on the path for block reads, and then to
locate the sources of performance problems. By doing so, no suspicious part that
may bring large amounts of overhead was found. Because GUK is a minimal
operating system kernel that handles the block device access in a quite simple
way, smarts are at the Java level.

Therefore, by using exclusive method, the performance bottleneck is likely to
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reside in GuestVM file system that is implemented in Java. GuestVM defines
a Virtual File System (VFS) interface that corresponds to the native method
layer, and borrows the ext2 file system implementations from JNode. The main
aspects of performance tuning include code optimization and caching strategy
[41]. From the comparisons between GuestVM and HotSpot JVM shown in
Figure 3.10, GuestVM is only 2.5 times slower than HotSpot when reading a
file sized 1 kilobyte, but performs rather poor for reading large files. This could
result from caching strategy. More analysis and experiments are presented in
the following sections.

Code Optimization

To figure out which portions of code have potential to be optimized, Sys-
tem.nanoTime() statements are injected to the file system to trace which parts
are time consuming. It was found that to fit the file system interface of JNode,
GuestVM copies each data block twice when reading, from a file to a byte buffer
and then from the byte buffer to a byte array. The performance was improved
by modifying the interface and copying data from the file to a byte array directly
without copying to the intermediate byte buffer.

Figure 3.10 shows the improvement after reducing one time data copy, where
“GuestVM *” is the improved version. When reading a small file no larger than
10 kilobyte, the performance can be improved by up to 3 times compared to
the original GuestVM. When reading a file larger than 100 kilobyte, the elapsed
time is reduced by 25 percent on average. However, GuestVM is still close to 20
times slower than HotSpot JVM. The following experiments are based on this
enhanced GuestVM, and “GuestVM” means this improved version in the next
sections without specially mentioned.

Cache Strategy

For efficiency, Linux file systems support three caches for inodes, directory en-
tries, and data blocks respectively. GuestVM file system maintains two of them,
the inode cache for most-recently used inodes, and the buffer cache for most-
recently requested data.

The inode cache of GuestVM is implemented as a hash table, which is an object
inheriting from java.util.Hashtable. The buffer cache is managed as a least re-
cently used (LRU) hash map, which is implemented by using java.util.LinkedHashMap
[42]. One feature of LinkedHashMap is to maintain the iteration order based on
access-order. It upholds a doubly-linked list running through all of its entries.
When an item is added to the cache, and every time it is accessed after that,
its entry is moved to the head of the list. This kind of map also includes a way
to remove the entry at the tail of the list automatically when the cache is full.
This makes it well suited for building LRU caches.

Like most modern operating systems, the buffer cache of GuestVM buffers data
as blocks, which are the smallest units of disk I/O. The block size is 4 kilobyte.
The cache size is fixed at 10 blocks (i.e., 40 kilobyte). The cache mechanism
of Linux is more sophisticated. To make the efficient use of memory, Linux
automatically allocate all free RAM for buffer cache, which could be hundreds
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megabytes or even more than gigabytes. When other applications need more
memory, Linux makes the cache smaller automatically [43]. When reading large
amounts of data, e.g. 200 megabyte, from disk in Linux, all the data is cached
in memory after warming up. This can be observed by tracking the change of
memory usage with monitoring tool free in Linux. That is, the measurement,
e.g. 298 ms for reading 200 megabyte shown in Figure 3.10, is actually the
time used to read from memory. Since the effectiveness of a cache is principally
decided by its size [44], compared to Linux, the small and poor buffer cache of
GuestVM is a main reason of bad performance. In GuestVM, when repeatedly
reading a file larger than 40 kilobyte, every block is read from disk, cached in
memory, and flushed from the cache before it is reused when new block comes.
In such a case, the elapsed time shown in Figure 3.10, excluding the cases of
reading a file sized 1 and 10 kilobyte in GuestVM, all comes from disk reading;
the small cache is next to useless.

To verify this, Figure 3.11 presents the time used for reading a file size 4 kilobyte
for 50000 times and a file sized 40 kilobyte for 5000 times. As the reading file
size is no larger than GuestVM’s buffer cache size, after warming up, all the
data to read are in buffer cache. In this way, the influence of insufficient buffer
cache and prefetching (which will be discussed in the next section) is eliminated.
From the results, GuestVM performs 2.3 times faster than HotSpot JVM and
4 times faster than Maxine on average, which is excellent. This could benefit
from its minimal and all-Java software stack.

Figure 3.11: Time used for reading small size of files repeatly

To further verify the influence of cache, the buffer cache size was increased
to 220 megabyte, which is large enough for holding a file no larger than 200
megabyte after warming up as Linux. Based on the previous analysis, the read
performance should be greatly improved. Figure 3.13 presents the time used to
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read different sizes of files in GuestVM with sufficient buffer cache, and compares
them to Maxine and HotSpot JVM. To make the comparison clear, Figure 3.12
gives two typical examples from the five sets of measurements.

Figure 3.12: Time used for reading files sized 1MB and 200MB with enough
buffer cache

Figure 3.13: Time used for reading different sizes of files with enough buffer
cache

From Figure 3.12 and 3.13, GuestVM is once slower than HotSpot on average,
whereas 4 times faster than Maxine. Its performance advantage increases as the
file size growing. For the file sized larger than 100 megabyte, GuestVM is only
1.5 times slower compared to HotSpot JVM.

In the case of sequentially accessing a file, the buffer cache is useless unless the
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cache is large enough for caching the entire file. Otherwise, the blocks in cache
are always swapped out before being reused by new ones. However, in the case
of randomly access a file, the performance can be improved as the size of buffer
cache increasing, even though it is not sufficient to hold the whole file. Figure
3.14 shows the measurements from the experiments running on GuestVM that
randomly reads a file sized 5 megabyte with different sizes of buffer cache ranged
from 40 kilobyte (the original buffer cache size of GuestVM) to 8 megabyte (that
is able to holding the entire file), where “GuestVM-N” means GuestVM with a
file system buffer cache sized N. They were tested through the code in Listing
3.7. In this experiment, the overhead introduced by line 4 to generate a random
offset to read from is eliminated by subtracting the time used for running the
code of line 4 for block number times, which is 31’897, 86’300, and 84’367 (ns)
respectively for HotSpot JVM, Maxine, and GuestVM.

Listing 3.7: Code for Randomly Reading a File

1 byte [ ] data = new byte [ BLOCK_SIZE ] ;
2
3 for ( int i = 0 ; i < DATA_SIZE / BLOCK_SIZE ; i++) {
4 offset = random . nextInt ( DATA_SIZE − BLOCK_SIZE ) ;
5 file . seek ( offset ) ;
6 file . read ( data ) ;
7 }

From Figure 3.14, the randomly reading performance of GuestVM increases as
the size of buffer cache growing. By giving enough cache, it can be improved by
15 times compared to its original size (40 kilobyte), and even 4.6 times faster
than Maxine, but still 2.7 times slower than HotSpot.

GuestVM file system misses the directory cache, which is used to speed up
accesses to commonly used directories. In Linux, as directories are looked up
by a file system (e.g., ext2), their details are added to the directory cache. The
next time when the same directory is used, for example to list it or open a file
within it, it will be found in the cache. Missing directory cache could slow down
the creation of files.

Prefetching

Prefetching is a significant technique for improving disk I/O performance. Con-
sider a program sequentially accessing a file, caching is not sufficient to explore
spatial locality. The basic idea for prefetching in Linux is to read up to 64 blocks
ahead when it detects long sequential runs. Prefetching can hide I/O latency
by fetching data into cache before they are requested by programs. Notice that
prefetching expects each file is continuously stored on the physical disk, i.e.,
there is no severe fragmentation. This is guaranteed by Linux file system as
long as the storage space is not overused [45].

GuestVM does not supply any means for reading ahead. It reads from disk
block by block. By tracing the outputs of the number sequence of the blocks
to read in the process of disk reading, the file data blocks and the inode blocks
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Figure 3.14: Time used for randomly reading a file sized 5MB with different
sizes of buffer cache

Figure 3.15: Time used for reading files sized 1MB and 200MB with prefetching
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that map the inode number of a block to an absolute block number in the file
system are read alternatively. This means even there is only one application
running in the virtual machine that sequentially reads a file, the blocks to read
are not accessed in sequential positions on the disk. That is, the access time is
spent much on seek time and rotational latency, the proportion of transfer time
is small, thus the disk throughput is low. Reading ahead is to use large I/O
instead of small I/O to increase the efficiency and throughput of the disk.

This work gives a simple implementation of prefetching in GuestVM file system
part. But it can only read up to 8 blocks ahead because of a disk access bug in
GuestVM. The native read in GUK does not guarantee the validity for reading
more than one block size of data in a single I/O. To verify the correctness of
the implementation of prefetching, the GuestVM file system was extracted from
GuestVM, and the file reading tests that use GuestVM file system but without
going through GUK have been passed successfully. However, the experiments
that read up to 8 blocks ahead were given to evaluate the performance improve-
ment brought by prefetching (as shown in Figure 3.16, and a clear representation
in Figure 3.15, where “GuestVM-N” means reading N blocks ahead), and com-
pared it to HotSpot JVM and Maxine. The measurements of HotSpot JVM
and Maxine came from reading a file with prefetching mechanism in Linux, but
without file system caching. The influence of Linux page cache was removed
by using echo 1 > /proc/sys/vm/drop_caches before each time reading. While
GuestVM uses its original buffer cache, i.e., 40 kilobyte, which is next to useless
in this case.

Figure 3.16: Time used for reading a file with prefetching

From Figure 3.15 and 3.16, the reading performance on average can be improved
by 30 and 40 percent respectively by prefetching 4 and 8 blocks compared to
GuestVM without prefetching. The time used to read 100 kilobyte data di-
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rectly from disk by HotSpot JVM is quite large, about 2000 times more than
from caching. Without consider this particular case, GuestVM performs ap-
proximately 25 percent faster than HotSpot JVM on average.



Chapter 4

Managing
MacroComponents

One crucial principle to design MacroComponents is reducing the overhead in-
troduced by virtualization by minimizing software stack. Chapter 3 improved
the performance of GuestVM to make it a possible solution for MacroCompo-
nents. The architecture of the MacroComponents in this work is shown in Figure
4.1. GuestVMs sit directly between Xen hypervisor and OSGi applications to
play a role as operating systems as well as JVMs. GuestVMs run as Domain
U, whereas Linux runs as privileged Domain 0. The inter-domain communica-
tions are expected to be handled by R-OSGi. To run such MacroComponents,
this Chapter describes a design for efficient communications between GuestVM
domains by using shared memory as connection channels, and then presents
a monitoring and management GUI tool to help developers to manipulate the
MacroComponents in a graphical way.

Figure 4.1: Architecture of MacroComponents
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4.1 Design for Communication between GuestVM
Domains

Performance isolation and lightweight runtime can be achieved by running sev-
eral MacroComponents in parallel directly on Xen hypervisor, where Macro-
Component, in this work, is GuestVM together with the applications running
on it. With isolation, however, there are no more direct ways for the compo-
nents to communicate. Basically, communication between domains is via shared
medium, usually is a network or shared memory [5]. GuestVM provides a com-
plete TCP/IP network stack. However, communication through network stack
is expensive because Xen virtual network results in low throughput at max CPU
usage caused by Xen hypercalls and network stack, where a packet sent from
Dom U1 to Dom U2 needs to go through the TCP-stack twice (Dom U1 →
Dom 0 → Dom U2) [46]. Shared memory is an alternative efficient approach for
interdomain communication simply by creating overlapping address spaces [2].

Xen provides a grant table mechanism that allows memory pages to be trans-
ferred or shared between virtual machines. Each domain has its own grant table
shared with Xen. Entities in the table are identified by grant references [13].

To share memory between GuestVMs, two components are involved: one offers
the pages, whereas the other maps it. To offer the shared memory, the sender
guest domain creates a grant table, and fills it with the domain ID of the domain
being granted foreign privileges and the address of the shared memory. Then
the receiver domain maps page frames associated with a given grant reference,
domain pair to its own address space, and then use the shared pages via a
grant handler. Notice that before memory mapping, the grant reference and
the sender domain ID need to be communicated via an out-of-band mechanism,
XenStore. XenStore is an information storage space shared between Xen guests,
maintained by Domain 0 and accessed through a shared memory page and an
event channel. It is not meant for large data transfers [47]. By now, the basic
channel for efficiently exchanging data has been established.

To achieve asynchronous communication, the shared memory area can be de-
signed as a ring structure, as Xen I/O Ring. Since the communication structure
of R-OSGi is messaged-based, the ring buffers can be used as a queue for ex-
changed messages. One domain places a request message in the ring, whereas
the other removes it and inserts a response message. Basically, five compo-
nents are involved in a ring: start and end pointers for producer and customer,
and the buffer itself. Event channels, which are the standard mechanism for
asynchronous notifications within Xen, need to be used to signal that data is
available [13].

Network channels in R-OSGi are persistent TCP connections. To use shared
memory for communication between domains via R-OSGi, the TCP connection
channel (TCPChannelFactory class) should be replaced with a shared memory
connection channel. The low level code that use Xen grant table for memory
sharing is written in C, thus a shared library file from the native code should
be created and integrated in GuestVM’s GUK kernel, and invoked via JNI calls
in R-OSGi.
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Figure 4.2: GuestVM Inter Domain Communication

To sum up, the communication between GuestVM domains can consist of the
following steps (as shown in Figure 4.2):

1. The service customer sends a connection request via XenStore to the ser-
vice provider with its domain ID;

2. The service provider offers a piece of memory for sharing, which could be
in a ring structure, and sends a response with the related information for
communication, including grant reference and its domain ID;

3. The service customer maps the shared memory to its domain’s address
space (that is, the pseudo-physical address), then the connection has been
established;

4. The service customer sends a service request with the service identifier;

5. The service provider delivers the requested service to the shared memory,
and an event is trigged to deliver a notification to tell the service customer
that there is a response waiting;

6. The service customer fetches the service and closes the connection;

7. The service provider closes the connection and unmaps the shared pages.

4.2 MacroComponents Monitoring AndManage-
ment GUI Tool

Multiple MacroComponents as virtual machines could be running concurrently
on a physical machine to isolate performance. The only way for monitoring the
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domains and managing the applications running on them is through terminals.
This is difficult especially when multiple domains are involved. Developers have
no sense of the overall picture of the system as well as the network communica-
tion among the components. The MacroComponent monitoring and managing
GUI tool has been written as a Rich Client Platform (RCP) [48] Eclipse plug-in
that provides a graphical overview and management of multiple MacroCompo-
nents running on a hardware hypervisor based on Eclipse’s Graphical Editing
Framework (GEF) (as shown in Figure 4.3) [49]. It has a friendly user inter-
face and can be used to visualize the structure of a MacroComponent system,
to monitoring the properties of components, to install new OSGi bundles, and
start, stop, uninstall the existing bundles.

Figure 4.3: Screenshot of the MacroComponent Monitoring and Managing GUI
Tool

The GUI design is based on a Model-View-Controller (MVC) architecture [50]
from GEF that distinguishes between model and view. Model is to represent
the real entities such as bundles. All information and data about an entity
is persisted and only persisted in the model. View is to display the model
using figures from Draw2D plug-in. The model and the view do not hold any
references to each other. The controller is the bridge between that drives the
view depending on the model and modifies the model depending on actions
carried on the view.
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The architecture of this GUI tool is shown in Figure 4.4. All components to
display in this tool are modeled as nodes that hold their properties (e.g., name,
status, and layout). There are five kinds of nodes represented in GUI: Monitor,
Xen, Domain, Bundle, and Connection. A Xen could contain multiple Domains
as children; a Domain in turn could have a list of Bundles; a Connection is to
connect two Domains; the Monitor is the top that holds all the nodes.

The tool has the basic functions such as undo, redo, delete, zoom, keyboard
shortcuts. Undo and redo are only in charge of graphical operations like chang-
ing layout, adding or deleting a node, but not used to handle operations on
components, for example, installing a bundle or starting a domain cannot be
undone. In addition, an outline is provided to add a view to show the graph
as a tree, and a miniature of the graph is added in the outline view, which is
very useful when using zoom functions. Four context menus bound to right
mouse click are provided for the operations of Xen, Domain, Bundle and Con-
nection respectively. Also a property window is implemented to display and edit
properties of the component nodes. A color property is given to Domains that
allows user to customize background color of a domain, which is useful when
using zoom together with miniature view where the characters are too small
to recognize. New graphical elements, Domain and Connection, can be added
by using tools on palette by using drag and drop, and marquee tool is used to
select multiple nodes to facilitate mass actions.

Figure 4.4: The design architecture of the GUI tool
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The tool can be used to visualize the structure a MacroComponent system, to
monitor the domains running on Xen hypervisor, the OSGi bundles running in a
domain, and the connections between domains (the connections are implemented
only at a graphic level, and the functionalities behind need the support of a
connection channel between domains, which has not been implemented yet.
More details are given in section 4.1). The bundles inside Eclipse running in
Domain 0, i.e., Linux, are obtained from bundle context, and the properties
about OSGi bundles are presented by the tool, including all the information
from manifest such as the bundle version, import packages, required bundles.
The bundles listed in a domain are sorted by their bundle ID and colored by their
state, which gives a clear overview of bundles. A new bundle can be installed
from a URL to a domain as shown in Figure 4.3. After installed successfully, a
child added event is fired to refresh the visuals of bundles in the domain and add
the bundle to the end of list colored by its state. Also, the tool allows starting,
stopping and uninstalling each installed bundles. In case of failed, exception
information is given with failure reasons.

Figure 4.5: Screenshot of installing a bundle

To handle the OSGi applications running on Domain U, a standalone OSGi
server should be run on GuestVM. To achieve this, org.eclipse.osgi.jar and ap-
plication bundles (e.g., helloworld.jar) need to be copied to the virtual disk of
GuestVM, which is mounted as /guestvm/java. In the directory of GuestVM-
Native, the OSGi server is started via the command in Listing 4.1. And then,
the operations are the same as the usual case. For instance, install a bundle
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from a certain URL as shown below.

Listing 4.1: Commands for running a OSGi server on GuestVM

# bin/run_jre −jar /guestvm/java/osgi . jar −console
osgi > install file : / guestvm/java/helloworld . jar

To start a OSGi server on GuestVM through the management tool, Runtime.exec()
is used to execute the command and return a process. The interaction between
the tool and GuestVM domains can be carried out by writing the commands as
input to the output stream of the process, and getting the response information
from the input stream of the process. This is the way to operate on bundles and
to get information of the bundles from GuestVM. However, GuestVM cannot
exit as normal when stopping the OSGi server because of a GuestVM: sym-
bol Java_java_io_FileDescriptor_sync not found, exiting exception. This crash
exit results in the file system of GuestVM mounted as read-only, and cannot run
an OSGi server again. This problem is one reason that prevents to run OSGi
applications on GuestVM in practical use.
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Chapter 5

Conclusions

5.1 Future Work

This work gave a design for inter-domain communications between GuestVM
via shared memory. The next step should be implemented and integrated it to
R-OSGi connection channels. After that, more evaluations can be carried out
for the different implementations of inter-domain communications and compare
the results. The next step could be running large applications on such Macro-
Components that use GuestVM as Domain U. One convincing application is to
run TCP-W benchmark [51] on Tomcat [52] as application server and H2 [53]
as database for evaluation. Tomcat and H2 database are written in Java, and is
possible implemented as OSGi modules. But before that, numbers of GuestVM
bugs need to be fixed.

5.2 Conclusions

High performance is a prerequisite of MacroComponents; otherwise complete
operating systems can be used instead. Theoretically, as the key part of Macro-
Components, GuestVM has the potential for good performance because of its
all-Java and minimal software stack, but in practice it performs quite poor from
[2]’s work. This work improved the performance of GuestVM to make it a
practical solution for MacroComponents.

GuestVM builds on Maxine, uses Maxine’s implementation of Java memory
model, and hardly adds overhead to Maxine. But since Maxine is approximately
5 times slower than HotSpot JVM considering the optimization of Java working
memory, GuestVM cannot obtain faster memory accesses until the performance
of Maxine is improved. However, the GuestVM’s I/O performance has been
improved that on average is 5 times as fast as Maxine, and only 50% slower
than HotSpot JVM. In many cases, GuestVM can even outperform HotSpot
JVM. This improvement is via optimizing code, providing enough buffer cache
and supporting prefetching.

It is worthy of note that although GuestVM is able to meet the performance
requirements of MacroComponents in a way, as an experimental project, it still
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has numbers of bugs need to be fixed to run big applications in practice.

For running multiple distributed OSGi-based MacroComponents, a design that
uses shared memory for communications between GuestVM domains and inte-
grates this communication approach to R-OSGi connection channels is given.
It aims to provide an efficient approach for inter-domain communications com-
pared to traditional network. Finally, this work presents a GUI tool that pro-
vides a friendly user interface and can be used to visualize the structure of a
MacroComponent system, to monitoring the properties of components, to install
new OSGi bundles, and start, stop, uninstall the existing bundles.
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