
bfdmux

Barrelfish Demultiplexer

Amin Baumeler, Rainer Voigt

16 Sep 2009

Contents

1 Barrelfish demultiplexer - bfdmux 1

1.1 Introduction . 1

1.2 Documentation . 1

2 Bfdmux Filter Language 3

2.1 Operators . 4

2.2 Arithmetic . 4

2.3 Comparison . 4

2.4 Logical . 4

2.5 Bitwise . 5

2.6 Packet access . 5

2.7 Examples . 5

2.8 Operator precedence . 5

3 Bfdmux development manual 7

3.1 Communication concept . 8

3.2 Important data fields . 8

3.3 Functional overview . 9

3.4 Event overview . 10

4 Bfdmux network interface manual 11

4.1 a new network interface . 12

4.2 incoming data to bfdmux . 12

5 Libbfdmux application developer manual 15

5.1 Building libbfdmux . 16

5.2 Binding your application together with libbfdmux 16

ii CONTENTS

5.3 Interface to bfdmux . 16

5.4 Managing debug output . 17

6 Storage of filter code 19

6.1 General . 20

6.2 Op-Codes . 20

7 Libbfdmux design 23

7.1 Client interface protocol . 24

7.2 Command packets . 24

7.3 Command channel . 25

7.4 Data channel . 25

7.5 Read-write locks . 26

7.6 Helper functions . 26

8 Libbfdmux internal development manual 27

8.1 Adding a command to libbfdmux . 28

9 Sample libbfdmux applications 29

9.1 Overview . 30

9.2 Bfdmuxchat . 30

9.3 Bfdmuxsniff . 30

9.4 Message Queue Loopback . 30

10 Todo List 33

11 Directory Hierarchy 35

11.1 Directories . 35

12 Data Structure Index 37

12.1 Data Structures . 37

13 File Index 39

13.1 File List . 39

14 Directory Documentation 41

14.1 bfdmux/ Directory Reference . 41

14.2 libbfdmux/bfdmuxchat/ Directory Reference 42

Barrelfish Demultiplexer

CONTENTS iii

14.3 libbfdmux/bfdmuxsniff/bfdmuxinject/ Directory Reference 43

14.4 libbfdmux/bfdmuxsniff/ Directory Reference 44

14.5 doc/ Directory Reference . 45

14.6 libbfdmux/src/include/ Directory Reference 46

14.7 bfdmux/src/include/ Directory Reference 47

14.8 libbfdmux/ Directory Reference . 48

14.9 libbfdmux/bfdmuxchat/msgq_loopback/ Directory Reference 49

14.10bfdmux/src/netif/ Directory Reference 50

14.11bfdmux/src/include/netif/ Directory Reference 51

14.12libbfdmux/src/ Directory Reference 52

14.13libbfdmux/bfdmuxsniff/src/ Directory Reference 53

14.14libbfdmux/bfdmuxsniff/bfdmuxinject/src/ Directory Reference 54

14.15libbfdmux/bfdmuxchat/msgq_loopback/src/ Directory Reference . . . 55

14.16bfdmux/src/ Directory Reference . 56

15 Data Structure Documentation 57

15.1 client_app Struct Reference . 57

15.2 cmd_attach Struct Reference . 59

15.3 cmd_attach_answer Struct Reference 60

15.4 cmd_detach Struct Reference . 61

15.5 cmd_detach_answer Struct Reference 62

15.6 cmd_error Struct Reference . 63

15.7 cmd_recv Struct Reference . 64

15.8 cmd_recv_answer Struct Reference 65

15.9 cmd_register Struct Reference . 66

15.10cmd_register_answer Struct Reference 67

15.11cmd_send Struct Reference . 68

15.12cmd_send_answer Struct Reference 69

15.13cmd_unregister Struct Reference . 70

15.14cmd_unregister_answer Struct Reference 71

15.15filter Struct Reference . 72

15.16nic_message_buf Struct Reference 73

15.17op_def_t Struct Reference . 74

16 File Documentation 75

bfdmux

iv CONTENTS

16.1 bfdmux/src/bfdmux.c File Reference 75

16.2 bfdmux/src/codegen.c File Reference 82

16.3 bfdmux/src/filter.c File Reference 87

16.4 bfdmux/src/include/codegen.h File Reference 90

16.5 bfdmux/src/include/filter.h File Reference 93

16.6 bfdmux/src/include/netif.h File Reference 98

16.7 bfdmux/src/include/netif/mqif.h File Reference 101

16.8 bfdmux/src/include/opdefs.h File Reference 102

16.9 bfdmux/src/include/register.h File Reference 104

16.10bfdmux/src/include/server.h File Reference 109

16.11bfdmux/src/include/vm.h File Reference 113

16.12bfdmux/src/netif/mqif.c File Reference 115

16.13bfdmux/src/opdefs.c File Reference 119

16.14bfdmux/src/register.c File Reference 122

16.15bfdmux/src/server.c File Reference 126

16.16bfdmux/src/vm.c File Reference . 134

16.17libbfdmux/bfdmuxchat/bfdmuxchat.c File Reference 137

16.18libbfdmux/bfdmuxchat/msgq_loopback/src/msgq_clear.c File Reference 140

16.19libbfdmux/bfdmuxchat/msgq_loopback/src/msgq_loopback.c File
Reference . 141

16.20libbfdmux/bfdmuxsniff/bfdmuxinject/src/bfdmuxinject.c File Reference 142

16.21libbfdmux/bfdmuxsniff/src/bfdmuxsniff.c File Reference 145

16.22libbfdmux/src/bfdmux_ciprot.c File Reference 149

16.23libbfdmux/src/include/bfdmux.h File Reference 152

16.24libbfdmux/src/include/bfdmux_ciprot.h File Reference 155

16.25libbfdmux/src/include/debug.h File Reference 161

16.26libbfdmux/src/include/libbfdmux.h File Reference 163

16.27libbfdmux/src/include/rwlock.h File Reference 168

16.28libbfdmux/src/include/tools.h File Reference 173

16.29libbfdmux/src/libbfdmux.c File Reference 178

16.30libbfdmux/src/rwlock.c File Reference 187

16.31libbfdmux/src/tools.c File Reference 192

Barrelfish Demultiplexer

Chapter 1

Barrelfish demultiplexer -
bfdmux

1.1 Introduction

This is the documentation for the bfdmux project started by Amin Baumeler and Rainer
Voigt in 2009 at ETH Zurich. bfdmux itself is a flexible network packet demultiplexer.
The project also provides a library (libbfdmux) that simplifies the task of connecting
applications to bfdmux.

1.2 Documentation

1.2.1 Client side

• How to develop applications that connect to bfdmux?

See Libbfdmux application developer manual.

• How can packet filters be specified?

See Bfdmux Filter Language.

• How does compiled filter code look like?

See Storage of filter code.

• How to modify and extend libbfdmux itself?

See Libbfdmux design

and Libbfdmux internal development manual.

• Sample applications

See Sample libbfdmux applications

2 Barrelfish demultiplexer - bfdmux

1.2.2 Server side

• How can I connect a NIC to bfdmux?

See Bfdmux network interface manual.

• How to modify and extend bfdmux itself?

See Bfdmux development manual.

Barrelfish Demultiplexer

Chapter 2

Bfdmux Filter Language

4 Bfdmux Filter Language

2.1 Operators

Note:

Documentation on compiled code can be found at Storage of filter code.

2.2 Arithmetic

• + Addition

• - Subtraction

• ∗Multiplication

• / Integer division

• % Modulus

2.3 Comparison

• == Equal

• > Signed greater

• < Signed less

• } Unsigned greater

• { Unsigned less

• >= Signed greater or equal

• <= Signed less or equal

• }= Unsigned greater or equal

• {= Unsigned less or equal

• != Unequal

2.4 Logical

• ! Not

• && And

• || Or

Barrelfish Demultiplexer

2.5 Bitwise 5

2.5 Bitwise

• & And

• | Or

• ∼ Not

• ∧ Xor

2.6 Packet access

Storage types

• int8

• int16

• int32

• int64

2.7 Examples

2.7.1 Byte Access

• Access the first 16 bits of a packet: int16[0]

• Access a 32 bit value starting at byte 8 in the packet: int32[8]

2.7.2 Example

• ((int8[0] + int8[1]) == 5) && (int16[0] >= 32))

matches packets starting with 0x0104, 0x0203, 0x0302, 0x0401 and 0x0500. It
will not match 0x06FF because all calculations are done as 64bit values!

Note:

It is actually possible to use round and square brackets interchangably, but we
recommend using square brackets around packet addresses for clarity.

2.8 Operator precedence

Sorted from lowest to highest:

||, &&, |, ∧, &, ==, !=, >=, <=, }=, {=, >, <, }, {, +, -, ∗, /, %, !, ∼, int8, int16, int32,
int64

bfdmux

6 Bfdmux Filter Language

Barrelfish Demultiplexer

Chapter 3

Bfdmux development manual

8 Bfdmux development manual

3.1 Communication concept

Bfdmux communicates with it’s client applications via the command interface, a simple
unix socket. The data transmission is done using two shared memory segments, one for
incoming and one for outgoing data. The shared memory holds at most one valid packet
at a time. Whenever a segment is filled with new data, this is signalled to the other party
via a special command. When the data has been read and processed, another command
is issued to indicate that the buffer is free again. The following picture illustrates the
relation of applications and bfdmux.

Figure 3.1: Application interface

3.2 Important data fields

Most important during bfdmux’s operation is the field app_table. It contains all run-
time information on the connected (and maybe registered) client applications. Please
see the doxygen documentation for app_table to know more about it’s members. The
pointer structure of app_table and it’s substructures is also visualized separately in the
following image.

Barrelfish Demultiplexer

3.3 Functional overview 9

Figure 3.2: Application table layout

The image is in png format and thus cannot be displayed here. Please consult the html
version of the documentation or look for ’app_table.png’ in the subversion repository.

Note:

app_table contains num_apps entries. Every access needs to be locked by acquir-
ing app_table_lock. See rwlock.c for details on locking.

Another field that is important at runtime is queue. This is the ring buffer used to store
pending demultiplexing requests. queue_first contains the index of the first element in
the queue, queue_len indicates the number of valid entries starting from queue_first.

Note:

If queue_len is 0, queue_first points to the next empty position. Otherwise queue_-
first contains the index of the first valid item (which is the one to be processed
next). All accesses to queue need to be locked using rwlock.c with the lock iden-
tifier queue_lock.

3.3 Functional overview

Bfdmux itself uses two threads at runtime. First, the main thread spawns the server
thread that handles all client communication over the unix sockets. Then, then main
thread enters a polling loop and waits for new demultiplexing requests. Whenever a
request is queued by the NIC, it runs the filter on the packet data and copies the packet
into the receiving applications buffers.

bfdmux

10 Bfdmux development manual

The server thread listens for connecting clients and waits for commands on all existing
client sockets using the select() function.

3.4 Event overview

filter.c:new_packet_event() invokes all filters on the given packet and forwards it to the
corresponding applications. This method is only called by the bfdmux main thread.

server.c:new_message_event() invoked by the server thread whenever a new command
has arrived from one of the client applications.

server.c:new_client_event() invoked by the server thread whenever a new application
tries to establish a command connection to bfdmux’s socket.

Barrelfish Demultiplexer

Chapter 4

Bfdmux network interface
manual

12 Bfdmux network interface manual

4.1 a new network interface

To use bfdmux with a specific NIC one has to implement some basic interface functions
as declared in bfdmux/src/include/netif.h. As netif.h declares the necessary functions
it is best to define them in a separate c file that will later be linked into the bfdmux
executable.

err_t init_nic_interface();

This method is called during bfdmux initialization. This is the time to talk to your NIC
and prepare it for it’s job. You might install a signal or interrupt handler for incoming
data at this point. There is no special interaction with bfdmux happening here.

err_t close_nic_interface();

This procedure is invoked during bfdmux shutdown. Cleanup everything that has been
set up in init_nic_interface() before and remove the interrupt handler, if any. There is
no interaction with bfdmux.

err_t nic_send(void∗ buf, size_t len);

This function takes a buffer of specified size and transmits it over the network. The
function will be called directly after the client signalled outgoing data to bfdmux.
Therefore the call should return immediately to not block bfdmux’s operation.

4.2 incoming data to bfdmux

Usually the function init_nic_interface will install some kind of signal or interrupt han-
dler to be called if new data has arrived on the network interface. The example interface
in mqif.c sets up a unix signal handler and reads data from a message queue whenever
it fires (see signal_handler in mqif.c). If not already done by the NIC, the handler
should copy the data into the ram. Then it just calls the function demux() declared in
bfdmux.h. demux() returns true, if the packet could be added to the demultiplexing
queue and false, if the queue is already full. In the latter case, the handler can either
queue the packet by himself or just drop it. Please keep in mind that demux() returns
immediately. If it returns true, the packet is waiting to be processed and cannot be
moved or deleted in ram (see warning)!

The demultiplexing queue is defined in bfdmux.h. It is a ring buffer storing packet
addresses and lengths for all pending demux requests. Therefore no data is copied
when queueing a request. The size of the ring buffer is PROC_QUEUE_LEN and can
be set to one, to entirely disable request queueing in bfdmux.

Note:

We found the request queueing to be useful to handle bursts. As bfdmux should
provide a demux function to the interrupt handler that returns non-blocking, the ac-
tual packet demultiplexing happens in a separate thread (the bfdmux main thread).
Thus, whenever two or more packets arrived at the same time, the demultiplexer
could only proocess the first packet, if there was no queueing. Here ’same time’
means ’too short that the demultiplexing thread could be sheduled inbetween’.
This leads to a high number of dropped packets, even though the actual packet

Barrelfish Demultiplexer

4.2 incoming data to bfdmux 13

demultiplexing was, on average, fast enough to process all incoming packets.

Warning:

In the current version of bfdmux there is no feedback to the nic interface when the
packet was finally processed by bfdmux (feedback could be implemented at the
end of new_packet_event). As the requests reside in a ring buffer of size PROC_-
QUEUE_LEN, the nic interrupt handler should ensure that at least the last PROC_-
QUEUE_LEN packets that have been sucessfully enqueued using demux() stay at
their originally specified address in ram and will not be overridden during demulti-
plexing. If packets are overwritten during demultiplexing, bfdmux might forward
non-matching packets to it’s applications, because the filter has been run on the
original packet and the packet has been overwritten before bfdmux finally copies
it to the applications memory.

bfdmux

14 Bfdmux network interface manual

Barrelfish Demultiplexer

Chapter 5

Libbfdmux application
developer manual

16 Libbfdmux application developer manual

5.1 Building libbfdmux

To build libbfdmux enter the libbfdmux/src directory and execute

$ make depend

followed by

$ make

To clean the already built objects you can run

$ make clean

5.2 Binding your application together with libbfdmux

To include this library in your project you need to include the "libbfdmux.h" header file
and to add the libbfdmux/src/include directory to your include path as a pre-processor
option. Additionally you will have to link your objects against bfdmux_ciprot.o and
libbfdmux.o and you also need the pthread library for successful compilation.

5.3 Interface to bfdmux

libbfdmux enables your application to communicate with the bfdmux instance running
on your machine to receive and send network packets.

5.3.1 Application registration

First the applications needs to register itself with the bfdmux process using the
’register_app()’ function. This function takes a pointer to a callback function that will
be called to handle incoming network packets. As additional arguments, it expects
two uninitailized pointers to an inbound and outbound buffer pointer, and the required
buffer sizes. The application should specify buffer sizes that allow to hold the largest
packet the application expects in inbound (resp. outbound) direction. Packet that ex-
ceed the buffer size will be truncated. Too small buffers will effectively reduce the
MTU in inbound/outbound direction for this application. register_app() returns OK on
success. Both pointer-pointers will be set to point to the out/in buffers. The signature
of the callback function looks as follows:

void callback(void∗ buffer, size_t packet_len, filterid_t filterid)

As a first argument the pointer to the received data will be passed. The second argu-
ments describes the size of the received packet, and the last argument the filter id that
matched this packet.

Barrelfish Demultiplexer

5.4 Managing debug output 17

5.3.2 Application deregistration

To terminate the session with bfdmux the application has to call unregister_app() with-
out any arguments. An OK as return value indicates a successful uncoupling from the
bfdmux instance.

5.3.3 Attaching filters

While registered, applications can attach themselves to filters. Network packets match-
ing these filters will then be forwarded to the application via the callback. To attach the
application to a given filter, you have to use the attach() function with a char pointer
to a filter string as the argument. The result will be a filter id greater or equal to zero.
Negative return values indicate an error.

5.3.4 Detatching filters

The function detach(), which takes a filter id as the single argument, detaches the filter
from the application. OK will be returned on success, ERR otherwise.

5.3.5 Sending network packets

The application should first assemble the packet it wants to send in the shared memory
buffer. Then there is a function to send the data out to the network. send() just takes
the length of the packet as argument.

5.4 Managing debug output

In the debug.h header file you can specify the debug level for messages on stdout. Here
an overview of the different debug levels:

0: No messages will be printed on stdout.

1: Only error messages will be printed.

2: Error and information messages will be printed.

3: Information, errors and packet data as ascii will be printed.

4: Information, errors and packet data as ascii and hex will be printed.

Note:

After changing the debug level you need to rebuild libbfdmux and your application
using libbfdmux.

bfdmux

18 Libbfdmux application developer manual

Barrelfish Demultiplexer

Chapter 6

Storage of filter code

20 Storage of filter code

6.1 General

Operators will be stored in an array representing the operator tree of the expression
using polish notation.

6.1.1 Example

((int8[0] + int8[1]) == 5) && (int16[0] >= 32))

BIC Representation:

0x42, 0x00000010 Operator &&, Subtree Size: 16 bytes

0x11 Operator ==

0x31 Operator +

0x71 Load Value: int8

0x61 Immediate Value: 1 byte

0x00 Data: 0

0x71 Load Value: int8

0x61 Immediate Value: 1 byte

0x01 Data: 1

0x61 Immediate Value: 1 byte

0x05 Data: 5

0x22 Operator >=

0x72 Load Value: int16

0x61 Immediate Value: 1 byte

0x00 Data: 0

0x61 Immediate Value: 1 byte

0x20 Data: 32

6.2 Op-Codes

6.2.1 comparison

• 0x11 Equal (==)

• 0x12 Signed greater (>)

• 0x13 Signed less (<)

• 0x14 Unsigned greater (})

• 0x15 Unsigned less ({)

Barrelfish Demultiplexer

6.2 Op-Codes 21

• 0x21 Unequal (!=)

• 0x22 Signed greater or equal (>=)

• 0x23 Signed less or equal (<=)

• 0x24 Unsigned greater or equal (}=)

• 0x25 Unsigned less or equal ({=)

6.2.2 arithmetic

• 0x31 Addition (+)

• 0x32 Subtraction (-)

• 0x33 Multiplication (∗)

• 0x34 Integer Division (/)

• 0x35 Modulus (%)

6.2.3 logical

• 0x41 Not (!)

• 0x42 And (&&), 4 byte value for subtree size follows

• 0x43 Or (||), 4 byte value for subtree size follows

6.2.4 bitwise

• 0x51 Not (∼)

• 0x52 And (&)

• 0x53 Or (|)

• 0x54 Xor (∧)

6.2.5 load data

• 0x61 Immediate value: 1 byte

• 0x62 Immediate value: 2 bytes

• 0x63 Immediate value: 4 bytes

• 0x64 Immediate value: 8 bytes

• 0x71 Indirect value: 1 byte, offset calculated in following subtree

bfdmux

22 Storage of filter code

• 0x72 Indirect value: 2 bytes, offset calculated in following subtree

• 0x73 Indirect value: 4 bytes, offset calculated in following subtree

• 0x74 Indirect value: 8 bytes, offset calculated in following subtree

Barrelfish Demultiplexer

Chapter 7

Libbfdmux design

24 Libbfdmux design

7.1 Client interface protocol

The client interface protocol is specified in the bfdmux_ciprot.h header file. It offers
the ability to create command packets and functions to extract meta information like
the packet size and the packet command. Additionally a function to check the validity
of a given command packet is implemented.

Note:

Functions relating to the command interface carry the abbreviation ’ci’ in their
name

7.2 Command packets

Command packets are structs where the first memeber describes the command itself.
This command member is of type cmd_t. Command arguments are given using other
struct members that are placed after the command member. These structs are then sent
over the command socket to bfdmux. This means that struct internal padding will also
be sent over the channel.

Warning:

To ensure that communication on the command interface works, you need to build
libbfdmux on the same machine as bfdmux or take special care of struct member
alignment.

7.2.1 Command structure

The header file contains for every command packet the accordingly struct with its com-
mand. While building the command packet you always need to set the cmd member to
the command type. The command types can also be found in the header file.

E.g. the register command packet is the struct cmd_register where you need to set the
.cmd member to CMD_REGISTER.

Click on the struct types for a description of the commands:

Commands sent from the application to bfdmux:

• struct cmd_register

• struct cmd_unregister

• struct cmd_attach (see Note)

• struct cmd_detach

• struct cmd_send

• struct cmd_error

• struct cmd_recv_answer

Barrelfish Demultiplexer

7.3 Command channel 25

Commands sent from bfdmux to the application:

• struct cmd_register_answer

• struct cmd_unregister_answer

• struct cmd_attach_answer

• struct cmd_detach_answer

• struct cmd_send_answer

• struct cmd_recv

Note:

A special command is cmd_attach. It has a variable length because you should be
able to attach the application to any given filter. The filter string length has to be
written in the second struct member called len.

7.3 Command channel

To send and receive commands to/from bfdmux, libbfdmux uses unix sockets. While
calling the register_app() function libbfdmux connects itself to the Unix socket located
at BFDMUX_SOCK_PATH, which is defined in the bfdmux.h header file. This socket
connection is closed when calling the unregister_app() function.

To send commands over this channel libbfdmux implements the bfdmux_ci_send()
function which takes a pointer to a data segment and the packet length as argument.
bfdmux_ci_recv() makes a blocking receive on the command socket and takes the same
arguments as bfdmux_ci_send().

Libbfdmux uses two threads for sending and receiving commands. The receive-thread
gets launched with the server_thread_start() function and waits for incoming com-
mands. In case of a CMD_RECV command, the event handler function will be called
with the network packet position and its size. After the handler exits a CMD_RECV_-
ANSWER command will be sent back to bfdmux indicating that the application is
ready to receive a new network packet.

Other incoming packets will be buffered until the application itself calls the recv_-
answer() function. This function does busy waiting until an answer command is avail-
able, sets the pointer-pointer argument to point to the command and returns the com-
mand size.

7.4 Data channel

Network packets are sent over two shared memory segments, one for each direction.
The shared memory segment gets created by the application while calling register_-
app(). On the registration procedure also both shared memory segment sizes and keys
are transmitted to bfdmux as the arguments of the command.

bfdmux

26 Libbfdmux design

7.5 Read-write locks

rwlock.c and rwlock.h implements read-write locks using semaphores. Read-write
locks can be acquired as read-only or read-and-write locks. With rwlock_create() such
a lock can be created, and with rwlock_destroy() the application can destroy the lock.

To acquire a lock you can call rwlock_acquire() with the lock id as first argument.
The second argument describes whether you want a read-and-write or read-only lock.
rwlock_acquire() is blocking. To use this function in a non blocking manner, the appli-
cation can use rwlock_try_acquire() which returns true on success and false on failure.
To elevate a read-only lock to a read-and-write lock you can use rwlock_elevate(). The
inverse operation can be performed using rwlock_lower(). rwlock_release() finally
frees that lock.

7.6 Helper functions

Libbfdmux also offers some helper function to simplify packet filter generation. These
helper functions are implemented in tools.c:

• build_ipv4_udp_filter()

• build_ipv4_tcp_filter()

• build_tcp_filter()

• build_udp_filter()

• build_ipv4_filter()

These take filtering options as arguments and return a filter string that can be used with
the attach() command.

Warning:

Don’t forget to free the filter string after its usage!

Barrelfish Demultiplexer

Chapter 8

Libbfdmux internal
development manual

28 Libbfdmux internal development manual

8.1 Adding a command to libbfdmux

8.1.1 Command definition

To add custom commands to libbfdmux you have to first define the command structure
in bfdmux_ciprot.h. The first struct member has to be of type cmd_t. Additionally as
many members as wanted can be added. Then you have to define the command id.

The functions cmd_get(), cmd_get_size() and cmd_check() implemented in bfdmux_-
ciprot.c should then also be adapted to handle this command type appropriately.

8.1.2 Commands fired by libbfdmux

If the additional command should be fired by the application/libbfdmux, you have to
add a new function in libbfdmux.c to build and send the command packet. To build
the command packet create an instance of your new struct and set the first member to
your defined command id. Then set all additional struct members and finally send the
command packet using bfdmux_ci_send(), where the first argument is a void pointer to
your command packet, and the second argument is the packet length.

8.1.3 Answer commands

If you intend to receive an answer you have to repeat the steps to design the answer
command. Then you can add your command in the server_thread() function by in-
serting a new case where all other answer commands resides. To get the answer for
the sent command now just call recv_answer() with a pointer-pointer as first argument.
This argument will then be set to point to the answer and as a return value you will get
the size of the answer command.

8.1.4 Commands fired by bfdmux

For a command that should be fired by bfdmux you again first have to design the
command packet and then you can create a new case in the server_thread() switch
to handle this command.

Barrelfish Demultiplexer

Chapter 9

Sample libbfdmux applications

30 Sample libbfdmux applications

9.1 Overview

• Bfdmuxchat

• Bfdmuxsniff

9.2 Bfdmuxchat

This sample application implements a chat service based on libbfdmux. Plaintext chat
messages will be sent to bfdmux containing the nickname as a prefix. To differentiate
between own, sent messages and messages from others, every client attaches a filter
that compares the first byte against the first byte of the nickname.

9.2.1 Usage

First run the bfdmux instance and the Message Queue Loopback and then you can
launch multiple chat applications. To quit the chat just hit Ctrl+C on your keyboard.

9.3 Bfdmuxsniff

By hitting the Ctrl+\ keystroke on your keyboard, you will be asked to the enter a filter.
This filter will then be attached at the sniff application and metadata of all matched
packets will be displayed.

To exit the application press Ctrl+C.

Bfdmuxsniff currently supports IPv4, TCP, UDP and ICMP.

9.4 Message Queue Loopback

This application implements a loopback for the message queue interface used by de-
fault by bfdmux. All outgoing packets will immediately be re-injected and a signal will
be sent to bfdmux indicating a new packet at its inbound message queue.

9.4.1 Usage

To run msgq_loopback just build it using the make utility and then execute ./msgq_-
loopback.

Note:

Please run msgq_loopback only after bfdmux. This application needs the PID of
the bfdmux instance to be able to re-inject packets.

Barrelfish Demultiplexer

9.4 Message Queue Loopback 31

9.4.2 Troubleshooting

If you get weird output on your applications try to run ./msgq_clean to flush all mes-
sage queues used by bfdmux.

bfdmux

32 Sample libbfdmux applications

Barrelfish Demultiplexer

Chapter 10

Todo List

34 Todo List

Global MAX_FILTER_CODE_SIZE Implement a better restriction for the filter
processing time per application

Global MQ_FLAG Verify and change if possible.

Barrelfish Demultiplexer

Chapter 11

Directory Hierarchy

11.1 Directories

This directory hierarchy is sorted roughly, but not completely, alphabetically:

bfdmux . 41
src . 56

include . 47
netif . 51

netif . 50
doc . 45
libbfdmux . 48

bfdmuxchat . 42
msgq_loopback . 49

src . 55
bfdmuxsniff . 44

bfdmuxinject . 43
src . 54

src . 53
src . 52

include . 46

36 Directory Hierarchy

Barrelfish Demultiplexer

Chapter 12

Data Structure Index

12.1 Data Structures

Here are the data structures with brief descriptions:

client_app (Holds all information about a registered application) 57
cmd_attach (Attach command Attach a filter to the application) 59
cmd_attach_answer (Answer command to the attach command) 60
cmd_detach (Detach command) . 61
cmd_detach_answer (Answer command to the detach command) 62
cmd_error (Error command) . 63
cmd_recv (Receive command) . 64
cmd_recv_answer (Answer command to the receive command) 65
cmd_register (Register command) . 66
cmd_register_answer (Answer command to the register command) 67
cmd_send (Send command) . 68
cmd_send_answer (Answer command to the send command) 69
cmd_unregister (Unregister command) . 70
cmd_unregister_answer (Answer command to the unregister command) . . . 71
filter (Encapsulates filter code and it’s length) 72
nic_message_buf (Message queue buffer) 73
op_def_t (Defines a type for operator definition entries) 74

38 Data Structure Index

Barrelfish Demultiplexer

Chapter 13

File Index

13.1 File List

Here is a list of all documented files with brief descriptions:

bfdmux/src/bfdmux.c (Bfdmux core functionality) 75
bfdmux/src/codegen.c (Code synthesizer for bfdmux filters) 82
bfdmux/src/filter.c (Provides high level filtering functionality to bfdmux) . . 87
bfdmux/src/opdefs.c (Bfdmux core functionality) 119
bfdmux/src/register.c (Application registration API) 122
bfdmux/src/server.c (Client application interface) 126
bfdmux/src/vm.c (Implements a virtual machine for executing compiled in-

termediate language byte code) 134
bfdmux/src/include/codegen.h (Code synthesizer for bfdmux filters) 90
bfdmux/src/include/filter.h (Application registration API) 93
bfdmux/src/include/netif.h (Interface file to the network card) 98
bfdmux/src/include/opdefs.h (Header file for opcode definitions) 102
bfdmux/src/include/register.h (Application registration API) 104
bfdmux/src/include/server.h (Server thread header file) 109
bfdmux/src/include/vm.h (Interface for filter execution virtual machine) . . . 113
bfdmux/src/include/netif/mqif.h (Header file for the example network inter-

face) . 101
bfdmux/src/netif/mqif.c (Sample network interface driver using two (in, out)

message queues) . 115
doc/doc_bfdmux.filterlanguage.h . ??
doc/doc_bfdmux.internal.development.manual.h ??
doc/doc_bfdmux.main.h . ??
doc/doc_bfdmux.network.interface.manual.h ??
doc/doc_interface.msgq_loopback.h . ??
doc/doc_libbfdmux.application.developer.manual.h ??
doc/doc_libbfdmux.bfdmux.bic.h . ??
doc/doc_libbfdmux.design.h . ??
doc/doc_libbfdmux.internal.development.manual.h ??
doc/doc_libbfdmux.sample.applications.h ??

40 File Index

libbfdmux/bfdmuxchat/bfdmuxchat.c (Sample chat application) 137
libbfdmux/bfdmuxchat/msgq_loopback/src/msgq_clear.c (Clean all message

queues) . 140
libbfdmux/bfdmuxchat/msgq_loopback/src/msgq_loopback.c (Message

queue loopback) . 141
libbfdmux/bfdmuxsniff/bfdmuxinject/src/bfdmuxinject.c (Inject real net-

work packets from your ’to-the-world-connected’ NIC into bfdmux
) . 142

libbfdmux/bfdmuxsniff/src/bfdmuxsniff.c (A sniffer written for bfdmux) . . 145
libbfdmux/src/bfdmux_ciprot.c (Bfdmux client protocol interface implemen-

tation) . 149
libbfdmux/src/libbfdmux.c (Interface for applications that want to use bfd-

mux) . 178
libbfdmux/src/rwlock.c (Read write lock) 187
libbfdmux/src/tools.c (Helper functoin and additional tools used by libbfd-

mux) . 192
libbfdmux/src/include/bfdmux.h (Bfdmux twek options) 152
libbfdmux/src/include/bfdmux_ciprot.h (Bfdmux command interface proto-

col header file Declaration of the available command packets and
the corresponding command types) 155

libbfdmux/src/include/debug.h (Debug makro definitions) 161
libbfdmux/src/include/libbfdmux.h (Libbfdmux API) 163
libbfdmux/src/include/rwlock.h (Read/write lock header file) 168
libbfdmux/src/include/tools.h (Header file for helper and additional functions)173

Barrelfish Demultiplexer

Chapter 14

Directory Documentation

14.1 bfdmux/ Directory Reference

bfdmuxsrc

libbfdmux

17
3

Directories

• directory src

42 Directory Documentation

14.2 libbfdmux/bfdmuxchat/ Directory Reference

libbfdmux

bfdmuxchat

src

1

msgq_loopback

bfdmux

2

17

Directories

• directory msgq_loopback

Files

• file bfdmuxchat.c
Sample chat application.

Barrelfish Demultiplexer

14.3 libbfdmux/bfdmuxsniff/bfdmuxinject/ Directory Reference 43

14.3 libbfdmux/bfdmuxsniff/bfdmuxinject/ Directory
Reference

bfdmuxsniff

bfdmuxinjectsrc

bfdmux

1

Directories

• directory src

bfdmux

44 Directory Documentation

14.4 libbfdmux/bfdmuxsniff/ Directory Reference

libbfdmux

bfdmuxsniffbfdmuxinject

bfdmux

1

src

src

117

Directories

• directory bfdmuxinject
• directory src

Barrelfish Demultiplexer

14.5 doc/ Directory Reference 45

14.5 doc/ Directory Reference

doc

Files

• file doc_bfdmux.filterlanguage.h
• file doc_bfdmux.internal.development.manual.h
• file doc_bfdmux.main.h
• file doc_bfdmux.network.interface.manual.h
• file doc_interface.msgq_loopback.h
• file doc_libbfdmux.application.developer.manual.h
• file doc_libbfdmux.bfdmux.bic.h
• file doc_libbfdmux.design.h
• file doc_libbfdmux.internal.development.manual.h
• file doc_libbfdmux.sample.applications.h

bfdmux

46 Directory Documentation

14.6 libbfdmux/src/include/ Directory Reference

src

include

Files

• file bfdmux.h
Bfdmux twek options.

• file bfdmux_ciprot.h
Bfdmux command interface protocol header file Declaration of the available com-
mand packets and the corresponding command types.

• file debug.h
Debug makro definitions.

• file libbfdmux.h
Libbfdmux API.

• file rwlock.h
Read/write lock header file.

• file tools.h
Header file for helper and additional functions.

Barrelfish Demultiplexer

14.7 bfdmux/src/include/ Directory Reference 47

14.7 bfdmux/src/include/ Directory Reference

src

include

libbfdmux

5

netif

3

Directories

• directory netif

Files

• file codegen.h
Code synthesizer for bfdmux filters.

• file filter.h
Application registration API.

• file netif.h
Interface file to the network card.

• file opdefs.h
Header file for opcode definitions.

• file register.h
Application registration API.

• file server.h
Server thread header file.

• file vm.h
Interface for filter execution virtual machine.

bfdmux

48 Directory Documentation

14.8 libbfdmux/ Directory Reference

libbfdmuxbfdmuxchat

src

1

bfdmux

2

bfdmuxsniff

1
1

17

Directories

• directory bfdmuxchat
• directory bfdmuxsniff
• directory src

Barrelfish Demultiplexer

14.9 libbfdmux/bfdmuxchat/msgq_loopback/ Directory Reference 49

14.9 libbfdmux/bfdmuxchat/msgq_loopback/ Direc-
tory Reference

bfdmuxchat

msgq_loopbacksrc

bfdmux

2

Directories

• directory src

bfdmux

50 Directory Documentation

14.10 bfdmux/src/netif/ Directory Reference

src

netif

libbfdmux

2

include

2
3
5

Files

• file mqif.c
Sample network interface driver using two (in, out) message queues.

Barrelfish Demultiplexer

14.11 bfdmux/src/include/netif/ Directory Reference 51

14.11 bfdmux/src/include/netif/ Directory Reference

include

netif

Files

• file mqif.h
Header file for the example network interface.

bfdmux

52 Directory Documentation

14.12 libbfdmux/src/ Directory Reference

libbfdmux

src

include

5

Directories

• directory include

Files

• file bfdmux_ciprot.c
Bfdmux client protocol interface implementation.

• file libbfdmux.c
Interface for applications that want to use bfdmux.

• file rwlock.c
Read write lock.

• file tools.c
Helper functoin and additional tools used by libbfdmux.

Barrelfish Demultiplexer

14.13 libbfdmux/bfdmuxsniff/src/ Directory Reference 53

14.13 libbfdmux/bfdmuxsniff/src/ Directory Reference

bfdmuxsniff

src

src

1

Files

• file bfdmuxsniff.c
A sniffer written for bfdmux.

bfdmux

54 Directory Documentation

14.14 libbfdmux/bfdmuxsniff/bfdmuxinject/src/ Direc-
tory Reference

bfdmuxinject

src

bfdmux

1

Files

• file bfdmuxinject.c
Inject real network packets from your ’to-the-world-connected’ NIC into bfdmux.

Barrelfish Demultiplexer

14.15 libbfdmux/bfdmuxchat/msgq_loopback/src/ Directory Reference 55

14.15 libbfdmux/bfdmuxchat/msgq_loopback/src/ Di-
rectory Reference

msgq_loopback

src

bfdmux

2

Files

• file msgq_clear.c
Clean all message queues.

• file msgq_loopback.c
Message queue loopback.

bfdmux

56 Directory Documentation

14.16 bfdmux/src/ Directory Reference

bfdmux

src

include libbfdmux
5

netif

2
2

3

Directories

• directory include
• directory netif

Files

• file bfdmux.c
Bfdmux core functionality.

• file codegen.c
Code synthesizer for bfdmux filters.

• file filter.c
Provides high level filtering functionality to bfdmux.

• file opdefs.c
Bfdmux core functionality.

• file register.c
Application registration API.

• file server.c
Client application interface.

• file vm.c
Implements a virtual machine for executing compiled intermediate language byte
code.

Barrelfish Demultiplexer

Chapter 15

Data Structure Documentation

15.1 client_app Struct Reference

Holds all information about a registered application.

Data Fields

• int num_filters

Length of the filter array.

• sock_t command_socket

Handle of the command connection socket.

• size_t size_in

Size of the shared memory buffer for packets towards the application.

• size_t size_out

Size of the shared memory buffer for packets going to be sent over the NIC.

• void ∗ buf_in

Pointer to shared memory for packets to the application.

• void ∗ buf_out

Pointer to shared memory for packets to the NIC.

• bool can_receive

Indicates that the application buffer can receive a packet.

• struct filter ∗ filters

An array of filters.

58 Data Structure Documentation

15.1.1 Detailed Description

Holds all information about a registered application.

Definition at line 35 of file register.h.

15.1.2 Field Documentation

15.1.2.1 void∗ client_app::buf_in

Pointer to shared memory for packets to the application.

This pointer might be NULL for newly connected applications!

Definition at line 45 of file register.h.

15.1.2.2 void∗ client_app::buf_out

Pointer to shared memory for packets to the NIC.

This pointer might be NULL for newly connected applications!

Definition at line 50 of file register.h.

15.1.2.3 bool client_app::can_receive

Indicates that the application buffer can receive a packet.

Set to false whenever buf_in contains unread data. Will be reset to true, after the
application read and confirmed the incoming packet. If the application does not read
the packet from the buffer early enough, packets to arriving for this application will be
dropped.

Definition at line 55 of file register.h.

15.1.2.4 struct filter∗ client_app::filters [read]

An array of filters.

Some elements might have the code member of the filter struct set to NULL. These are
no valid filters. They are kept to ensure the filter indices reported to the application are
valid array indices.

Definition at line 61 of file register.h.

Barrelfish Demultiplexer

15.2 cmd_attach Struct Reference 59

15.2 cmd_attach Struct Reference

Attach command Attach a filter to the application.

Data Fields

• cmd_t cmd
Command type (should be CMD_ATTACH).

• size_t len
Length of the filter string.

• char filter [1]
Filter string.

15.2.1 Detailed Description

Attach command Attach a filter to the application.

Warning:

This command has a variable length because of the filter string.

Definition at line 99 of file bfdmux_ciprot.h.

bfdmux

60 Data Structure Documentation

15.3 cmd_attach_answer Struct Reference

Answer command to the attach command.

Data Fields

• cmd_t cmd
Command type (should be CMD_ATTACH_ANSWER).

• filterid_t filter_id
Filter ID of the attached filter.

15.3.1 Detailed Description

Answer command to the attach command.

Definition at line 111 of file bfdmux_ciprot.h.

15.3.2 Field Documentation

15.3.2.1 filterid_t cmd_attach_answer::filter_id

Filter ID of the attached filter.

Will be -1 if bfdmux was not able to attach the filter.

Definition at line 115 of file bfdmux_ciprot.h.

Barrelfish Demultiplexer

15.4 cmd_detach Struct Reference 61

15.4 cmd_detach Struct Reference

Detach command.

Data Fields

• cmd_t cmd
Command type (should be CMD_DETACH).

• filterid_t filter_id
Filter ID of the filter the application wants to detach.

15.4.1 Detailed Description

Detach command.

Detach a filter from the applicatoin

Definition at line 127 of file bfdmux_ciprot.h.

bfdmux

62 Data Structure Documentation

15.5 cmd_detach_answer Struct Reference

Answer command to the detach command.

Data Fields

• cmd_t cmd
Command type (should be CMD_DETACH_ANSWER).

15.5.1 Detailed Description

Answer command to the detach command.

Definition at line 137 of file bfdmux_ciprot.h.

Barrelfish Demultiplexer

15.6 cmd_error Struct Reference 63

15.6 cmd_error Struct Reference

Error command.

Data Fields

• cmd_t cmd
Command type (should be CMD_ERROR).

15.6.1 Detailed Description

Error command.

This command will be used in both ways (bfdmux to application, application to bfd-
mux) and describes an error to the previous sent command.

Definition at line 192 of file bfdmux_ciprot.h.

bfdmux

64 Data Structure Documentation

15.7 cmd_recv Struct Reference

Receive command.

Data Fields

• cmd_t cmd
Command type (should be CMD_RECV).

• size_t len
Size of packet that arrived.

• filterid_t filter_id
Id of filter that matched to the packet.

15.7.1 Detailed Description

Receive command.

Command to inform an application about incoming data

Definition at line 169 of file bfdmux_ciprot.h.

Barrelfish Demultiplexer

15.8 cmd_recv_answer Struct Reference 65

15.8 cmd_recv_answer Struct Reference

Answer command to the receive command.

Data Fields

• cmd_t cmd
Command type (should be CMD_RECV_ANSWER).

15.8.1 Detailed Description

Answer command to the receive command.

Definition at line 181 of file bfdmux_ciprot.h.

bfdmux

66 Data Structure Documentation

15.9 cmd_register Struct Reference

Register command.

Data Fields

• cmd_t cmd
Command type (should be CMD_REGISTER).

• smkey_t key_in
Shared memory segment key of the inbound buffer (world to application).

• size_t size_in
Size of the inbound buffer.

• smkey_t key_out
Shared memory segment key of the outbound buffer (application to world).

• size_t size_out
Size of the outbound buffer.

15.9.1 Detailed Description

Register command.

Definition at line 57 of file bfdmux_ciprot.h.

Barrelfish Demultiplexer

15.10 cmd_register_answer Struct Reference 67

15.10 cmd_register_answer Struct Reference

Answer command to the register command.

Data Fields

• cmd_t cmd
Command type (should be CMD_REGISTER_ANSWER).

15.10.1 Detailed Description

Answer command to the register command.

Definition at line 73 of file bfdmux_ciprot.h.

bfdmux

68 Data Structure Documentation

15.11 cmd_send Struct Reference

Send command.

Data Fields

• cmd_t cmd
Command type (should be CMD_SEND).

• size_t len
Number of bytes the application wants to send.

15.11.1 Detailed Description

Send command.

After sending data out (by copying to the outbound shared memory segment), the ap-
plication needs to inform bfdmux

Definition at line 147 of file bfdmux_ciprot.h.

Barrelfish Demultiplexer

15.12 cmd_send_answer Struct Reference 69

15.12 cmd_send_answer Struct Reference

Answer command to the send command.

Data Fields

• cmd_t cmd
Command type (should be CMD_SEND_ANSWER).

• size_t len
Number of bytes bfdmux was able to send to the world.

15.12.1 Detailed Description

Answer command to the send command.

Definition at line 157 of file bfdmux_ciprot.h.

bfdmux

70 Data Structure Documentation

15.13 cmd_unregister Struct Reference

Unregister command.

Data Fields

• cmd_t cmd
Command type (should be CMD_UNREGISTER).

15.13.1 Detailed Description

Unregister command.

Definition at line 81 of file bfdmux_ciprot.h.

Barrelfish Demultiplexer

15.14 cmd_unregister_answer Struct Reference 71

15.14 cmd_unregister_answer Struct Reference

Answer command to the unregister command.

Data Fields

• cmd_t cmd
Command type (should be CMD_UNREGISTER_ANSWER).

15.14.1 Detailed Description

Answer command to the unregister command.

Definition at line 89 of file bfdmux_ciprot.h.

bfdmux

72 Data Structure Documentation

15.15 filter Struct Reference

Encapsulates filter code and it’s length.

Data Fields

• uint8_t ∗ code
A pointer to a memory location where the virtual byte code resides.

• int len
The length in bytes of the byte code.

15.15.1 Detailed Description

Encapsulates filter code and it’s length.

Definition at line 25 of file register.h.

Barrelfish Demultiplexer

15.16 nic_message_buf Struct Reference 73

15.16 nic_message_buf Struct Reference

Message queue buffer.

Data Fields

• long mtype
Type of the message (is always > 0).

• char mtext [NIC_MQ_SIZE]
Payload.

15.16.1 Detailed Description

Message queue buffer.

This message queue struct is used to send data from the NIC to the world and to receive
data from the world at the NIC.

Definition at line 26 of file mqif.h.

bfdmux

74 Data Structure Documentation

15.17 op_def_t Struct Reference

Defines a type for operator definition entries.

Data Fields

• char opstr [MAX_OPERATOR_STRING_LENGTH]
The string representing the operator.

• uint8_t opcode
The binary opcode the operator maps to.

• uint8_t reserved_length
The number of bytes that should be reserved for this operator. Usually this is exactly
one byte. See c file for exceptions.

• uint8_t arity
Specifies if the operator expects left, right, or both sides to be operands. 0x10 for
left-unary, 0x01 for right-unary, 0x11 for binary operators.

15.17.1 Detailed Description

Defines a type for operator definition entries.

Warning:

Operator strings cannot contain brackets!

Definition at line 25 of file opdefs.h.

Barrelfish Demultiplexer

Chapter 16

File Documentation

16.1 bfdmux/src/bfdmux.c File Reference

Bfdmux core functionality.

Include dependency graph for bfdmux.c:

bfdmux/src/bfdmux.c

server.h

bfdmux.h

libbfdmux.h filter.h

netif.h

rwlock.h

register.h

debug.h

bfdmux_ciprot.h tools.h

Defines

• #define SERVER_THREAD_PRIORITY 1000

Server thread priority.

76 File Documentation

Functions

• void wait_for_new_packet_and_lock (void)

Waits until the ring buffer contains new data for demultiplexing.

• bool check_demuxer_idle_and_lock (void)

Checks whether the demultiplexer can take a new processing request.

• bool demux (void ∗data, int len)

Tries to demux the given packet and forward it to the application.

• void quit (int signum)

Signal handler for SIGINT to catch Ctrl+C on stdin.

• int main ()

Main function that initializes bfdmux and starts the server thread to allow applica-
tions to connect.

Variables

• struct sigaction quitsa

Signal handler action structure to catch Ctrl+C on stdin.

• pthread_t server_thread

Handle of server thread.

• sock_t server_socket

Listen socket for client command connections.

• int queue_lock

Rwlock handle that should be acquired to access the packet processing queue.

• struct {
} queue [PROC_QUEUE_LEN]

Ring buffer of pending demultiplexing requests
.

• int queue_first

Index of first valid entry in the queue ring buffer.

• int queue_len

Number of valid entries, starting from index queue_first in queue.

Barrelfish Demultiplexer

16.1 bfdmux/src/bfdmux.c File Reference 77

16.1.1 Detailed Description

Bfdmux core functionality.

This is the bfdmux main thread. It spawns the client application server thread and takes
care of the actual packet filtering and forwarding.

Definition in file bfdmux.c.

16.1.2 Function Documentation

16.1.2.1 bool check_demuxer_idle_and_lock (void)

Checks whether the demultiplexer can take a new processing request.

If the demuxer can accept a new request, the function leaves the queue_lock locked for
reading, such that the caller can add it’s demux request right away.

Warning:

The release of the read lock is left to the caller!

Definition at line 103 of file bfdmux.c.

Here is the call graph for this function:

check_demuxer_idle_and_lock

rwlock_acquire

rwlock_release

Here is the caller graph for this function:

check_demuxer_idle_and_lock demux signal_handler init_nic_interface main

16.1.2.2 bool demux (void ∗ data, int len)

Tries to demux the given packet and forward it to the application.

Parameters:

data Points to the packet in memory

len Length of the packet data in bytes

Returns:

true if the packet could be put into the demuxer’s queue; otherwise false.

bfdmux

78 File Documentation

Definition at line 133 of file bfdmux.c.

Here is the call graph for this function:

demux

check_demuxer_idle_and_lock

rwlock_release

rwlock_acquire

Here is the caller graph for this function:

demux signal_handler init_nic_interface main

16.1.2.3 int main ()

Main function that initializes bfdmux and starts the server thread to allow applications
to connect.

This represents the main entry point of bfdmux. After initialization, this thread enters
a packet processing loop. The loop can be interrupted by the SIGINT signal.

Returns:

always returns zero

Definition at line 184 of file bfdmux.c.

Barrelfish Demultiplexer

16.1 bfdmux/src/bfdmux.c File Reference 79

Here is the call graph for this function:

main

init_nic_interface

rwlock_acquire

rwlock_release

initialize_server

rwlock_create

new_packet_event

quit

run

wait_for_new_packet_and_lock

signal_handler demux

check_demuxer_idle_and_lock

init_app_register

forward_packet_to_client

get_receipient_list

remove_app

write_bytes

execute_filter calc

find_app_in_tableremove_filter

close_nic_interface

close_server
rwlock_destroy

destroy_app_register

new_client_event

rwlock_elevate

rwlock_lower

new_message_event

add_app

add_filter

cmd_get

cmd_get_size

compile_filter

get_error_position_string

nic_send

read_bytes

compile_subtree

16.1.2.4 void quit (int signum)

Signal handler for SIGINT to catch Ctrl+C on stdin.

Parameters:

signum The signal number the handler was invoked for

Definition at line 159 of file bfdmux.c.

Here is the call graph for this function:

quit

close_nic_interface

close_server rwlock_destroy

destroy_app_register

rwlock_acquire

rwlock_release

bfdmux

80 File Documentation

Here is the caller graph for this function:

quit

main

psend2bfdmux main

16.1.2.5 void wait_for_new_packet_and_lock (void)

Waits until the ring buffer contains new data for demultiplexing.

If a new processing request has been found, the rwlock queue_lock will be left locked
for reading, such that the caller can continue right away.

Warning:

The release of the queue_lock is left to the caller upon return!

Definition at line 69 of file bfdmux.c.

Here is the call graph for this function:

wait_for_new_packet_and_lock

rwlock_acquire

rwlock_release

Here is the caller graph for this function:

wait_for_new_packet_and_lock main

16.1.3 Variable Documentation

16.1.3.1 struct { ... } queue[PROC_QUEUE_LEN]

Ring buffer of pending demultiplexing requests

.

packet_data Points to a packet in memory that still needs to be processed and for-
warded to the applications

packet_length Specifies the size of the packet in bytes

16.1.3.2 int queue_first

Index of first valid entry in the queue ring buffer.

Barrelfish Demultiplexer

16.1 bfdmux/src/bfdmux.c File Reference 81

Note:

The item is invalid, if queue_len is equal to zero!

Definition at line 57 of file bfdmux.c.

16.1.3.3 void ∗ server_thread

Handle of server thread.

Server thread function.

The server thread waits for incoming commands or answers from bfdmux and handles
them separately.

Parameters:

ptr NULL

Returns:

NULL

Definition at line 36 of file bfdmux.c.

bfdmux

82 File Documentation

16.2 bfdmux/src/codegen.c File Reference

Code synthesizer for bfdmux filters.

Include dependency graph for codegen.c:

bfdmux/src/codegen.c

codegen.h

filter.h

tools.h

opdefs.h

bfdmux.h

register.h

debug.h

libbfdmux.h

Functions

• int substrfind (char ∗str, int start_pos, int end_pos, char ∗substr)
Searches for ’substr’ in ’str’, between ’start_pos’ and ’end_pos’ inclusive, and not
inside brackets!

• bool ensure_enough_space (uint8_t ∗∗out, int ∗out_len, int ∗out_sz, int space_-
needed)

Checks if ’out’ still has ’space_needed’ empty bytes.

• int find_operator (char ∗expr, int from_pos, int to_pos, int ∗pos)
Tries to find the lowest precedence operator in an interval of ’expr’.

• void remove_spaces_and_braces (char ∗expr, int ∗from_pos, int ∗to_pos)
Removes leading and trailing spaces, and brackets that sourround the expression.

• int compile_subtree (char ∗expr, int from_pos, int to_pos, uint8_t ∗∗out, int
∗out_len, int ∗out_sz)

Compiles a whole subexpression and appends the byte code to ’out’.

Barrelfish Demultiplexer

16.2 bfdmux/src/codegen.c File Reference 83

• void compile_filter (char ∗expression, uint8_t ∗∗filter_code, int ∗filter_len)
Compiles a filter expression in Bfdmux Filter Language into Bfdmux Intermediate
Code.

16.2.1 Detailed Description

Code synthesizer for bfdmux filters.

This file provides functions to create byte code in Bfdmux Intermediate Language from
filter strings. This byte code can be executed using the functions in vm.c to filter
network packets.

Definition in file codegen.c.

16.2.2 Function Documentation

16.2.2.1 void compile_filter (char ∗ expression, uint8_t ∗∗ filter_code, int ∗
filter_len)

Compiles a filter expression in Bfdmux Filter Language into Bfdmux Intermediate
Code.

Parameters:

expression the expression to compile

→ filter_code Points to the memory buffer that contains the compiled filter, or
NULL, if an error occurred

→ filter_len Indicates the length of the compiled code, or contains the error posi-
tion in the filter string on failure

Definition at line 311 of file codegen.c.

Here is the call graph for this function:

compile_filter compile_subtree

ensure_enough_space

find_msb

find_operator

remove_spaces_and_braces

substrfind

Here is the caller graph for this function:

compile_filter new_message_event run main

bfdmux

84 File Documentation

16.2.2.2 int compile_subtree (char ∗ expr, int from_pos, int to_pos, uint8_t ∗∗
out, int ∗ out_len, int ∗ out_sz)

Compiles a whole subexpression and appends the byte code to ’out’.

Parameters:

expr the expression to work with

from_pos the first character of the subexpression to compile

to_pos the last character of the subexpression to compile

out a pointer to the array that holds the compiled byte code

out_len the number of bytes already in the array

out_sz the current size of the array (reallocation, if full)

Returns:

returns 0 on success, -1 on memory error, or an index of a character in the subex-
pression that failed to compile

Definition at line 203 of file codegen.c.

Here is the call graph for this function:

compile_subtree

ensure_enough_space

find_msb

find_operator

remove_spaces_and_braces

substrfind

Here is the caller graph for this function:

compile_subtree compile_filter new_message_event run main

16.2.2.3 bool ensure_enough_space (uint8_t ∗∗ out, int ∗ out_len, int ∗ out_sz,
int space_needed) [inline]

Checks if ’out’ still has ’space_needed’ empty bytes.

Parameters:

out the byte array

out_len the number of bytes already in the array ’out’

out_sz the length of the currently reserved space of ’out’

Barrelfish Demultiplexer

16.2 bfdmux/src/codegen.c File Reference 85

space_needed the number of bytes that need to be appended to ’out’

Returns:

returns true if enough space or reservation of larger space succeeded, otherwise
false

Definition at line 72 of file codegen.c.

Here is the caller graph for this function:

ensure_enough_space compile_subtree compile_filter new_message_event run

16.2.2.4 int find_operator (char ∗ expr, int from_pos, int to_pos, int ∗ pos)

Tries to find the lowest precedence operator in an interval of ’expr’.

Parameters:

expr the expression to search in

from_pos the first character of the serach interval

to_pos the last character of the search interval

pos the position where the operator has been found, if any

Returns:

the index of the operator in the op_list or -1 if no operator found

Definition at line 99 of file codegen.c.

Here is the call graph for this function:

find_operator substrfind

Here is the caller graph for this function:

find_operator compile_subtree compile_filter new_message_event run

16.2.2.5 void remove_spaces_and_braces (char ∗ expr, int ∗ from_pos, int ∗
to_pos)

Removes leading and trailing spaces, and brackets that sourround the expression.

bfdmux

86 File Documentation

Parameters:

expr the expression to work with

from_pos the start of the inverval to consider; may be shifted to the right

to_pos the end of the interval to consider; may be shifted left

Definition at line 122 of file codegen.c.

Here is the caller graph for this function:

remove_spaces_and_braces compile_subtree compile_filter new_message_event run

16.2.2.6 int substrfind (char ∗ str, int start_pos, int end_pos, char ∗ substr)
[inline]

Searches for ’substr’ in ’str’, between ’start_pos’ and ’end_pos’ inclusive, and not in-
side brackets!

Parameters:

str the string to be searched

start_pos the index of the first character of the search interval

end_pos the index of the last character of the search interval

substr the substring to look for

Returns:

returns the position at which ’substr’ has been found, -1 if not found, -2 on bracket
error

Definition at line 36 of file codegen.c.

Here is the caller graph for this function:

substrfind find_operator compile_subtree compile_filter new_message_event

Barrelfish Demultiplexer

16.3 bfdmux/src/filter.c File Reference 87

16.3 bfdmux/src/filter.c File Reference

Provides high level filtering functionality to bfdmux.

Include dependency graph for filter.c:

bfdmux/src/filter.c

vm.h

filter.h

register.h

server.h

rwlock.h

bfdmux.h

debug.h

libbfdmux.h

Functions

• int get_receipient_list (struct client_app ∗∗app_table, int app_cnt, uint8_-
t ∗packet_data, int packet_len, struct client_app ∗∗∗hits, filterid_t ∗∗fids)

Filters a packet with all filters of all applications.

• void new_packet_event (void ∗packet, int len)

Event handler for new packet data.

16.3.1 Detailed Description

Provides high level filtering functionality to bfdmux.

Definition in file filter.c.

bfdmux

88 File Documentation

16.3.2 Function Documentation

16.3.2.1 int get_receipient_list (struct client_app ∗∗ app_table, int app_cnt,
uint8_t ∗ packet_data, int packet_len, struct client_app ∗∗∗ hits,
filterid_t ∗∗ fids)

Filters a packet with all filters of all applications.

Parameters:

app_table The list of applications that are registered

app_cnt The number of applications in the list

packet_data Pointer to the raw packet data

packet_len Length of packet data in bytes

→ hits Points to an array of applications that had a least one matching filter.
Should be pointing to a NULL pointer initially.

→ fids Points to an array of the filter id of each application that matched the
packet. Should be pointing to a NULL pointer initially.

Returns:

Number of applications with matching filters (length of ’hits’). If zero, hits has not
been modified and might be invalid.

Definition at line 31 of file filter.c.

Here is the call graph for this function:

get_receipient_list execute_filter calc

Here is the caller graph for this function:

get_receipient_list new_packet_event main

16.3.2.2 void new_packet_event (void ∗ packet, int len)

Event handler for new packet data.

This function will be called by bfdmux, whenever a new data packet has arrived. It
invokes all filters on the packet data and tries to copy the packet to the application
input buffers, if one of the applications filters matched.

Parameters:

packet pointer to packet data

Barrelfish Demultiplexer

16.3 bfdmux/src/filter.c File Reference 89

len length of packet data in bytes

Definition at line 132 of file filter.c.

Here is the call graph for this function:

new_packet_event

forward_packet_to_client

get_receipient_list

remove_app

rwlock_acquire

rwlock_release

write_bytes

execute_filter calc

find_app_in_table

remove_filter

Here is the caller graph for this function:

new_packet_event main

bfdmux

90 File Documentation

16.4 bfdmux/src/include/codegen.h File Reference

Code synthesizer for bfdmux filters.

Include dependency graph for codegen.h:

bfdmux/src/include/codegen.h

filter.h

bfdmux.h

register.h

debug.h

libbfdmux.h

bfdmux_ciprot.h tools.h

Defines

• #define MAX_FILTER_CODE_SIZE 256

Maximum number of bytes for a compiled filter.

• #define INITIAL_ALLOC_SIZE 64
• #define INCREMENTAL_ALLOC_SIZE 64

Functions

• void compile_filter (char ∗expression, uint8_t ∗∗filter_code, int ∗filter_len)

Compiles a filter expression in Bfdmux Filter Language into Bfdmux Intermediate
Code.

16.4.1 Detailed Description

Code synthesizer for bfdmux filters.

This file provides the interface for the filter code generator.

Definition in file codegen.h.

Barrelfish Demultiplexer

16.4 bfdmux/src/include/codegen.h File Reference 91

16.4.2 Define Documentation

16.4.2.1 #define INCREMENTAL_ALLOC_SIZE 64

Size of realloc’ed blocks if filter code doesn’t fit

Definition at line 22 of file codegen.h.

16.4.2.2 #define INITIAL_ALLOC_SIZE 64

Size of initially allocated filter code block

Definition at line 21 of file codegen.h.

16.4.2.3 #define MAX_FILTER_CODE_SIZE 256

Maximum number of bytes for a compiled filter.

This is used to limit bfdmux’s workload in some way.

Todo

Implement a better restriction for the filter processing time per application

Definition at line 19 of file codegen.h.

16.4.3 Function Documentation

16.4.3.1 void compile_filter (char ∗ expression, uint8_t ∗∗ filter_code, int ∗
filter_len)

Compiles a filter expression in Bfdmux Filter Language into Bfdmux Intermediate
Code.

Parameters:

expression the expression to compile

→ filter_code Points to the memory buffer that contains the compiled filter, or
NULL, if an error occurred

→ filter_len Indicates the length of the compiled code, or contains the error posi-
tion in the filter string on failure

Definition at line 311 of file codegen.c.

bfdmux

92 File Documentation

Here is the call graph for this function:

compile_filter compile_subtree

ensure_enough_space

find_msb

find_operator

remove_spaces_and_braces

substrfind

Here is the caller graph for this function:

compile_filter new_message_event run main

Barrelfish Demultiplexer

16.5 bfdmux/src/include/filter.h File Reference 93

16.5 bfdmux/src/include/filter.h File Reference

Application registration API.

Include dependency graph for filter.h:

bfdmux/src/include/filter.h

bfdmux.h

register.h

debug.h

libbfdmux.h

bfdmux_ciprot.h tools.h

Defines

• #define OP_EQUAL 0x11
Operator ==.

• #define OP_SGREATER 0x12
Operator > (signed).

• #define OP_SLESS 0x13
Operator < (signed).

• #define OP_UGREATER 0x14
Operator > (unsigned).

• #define OP_ULESS 0x15
Operator < (unsigned).

• #define OP_UNEQUAL 0x21
Operator !=.

• #define OP_SGREATEREQUAL 0x22
Operator >= (signed).

• #define OP_SLESSEQUAL 0x23
Operator <= (signed).

bfdmux

94 File Documentation

• #define OP_UGREATEREQUAL 0x24

Operator >= (unsigned).

• #define OP_ULESSEQUAL 0x25

Operator <= (unsigned).

• #define OP_ADD 0x31

Operator +.

• #define OP_SUB 0x32

Operator -.

• #define OP_MULT 0x33

Operator ∗.

• #define OP_IDIV 0x34

Operator / (integer division).

• #define OP_MOD 0x35

Operator %.

• #define OP_NOT 0x41

Operator !

• #define OP_AND 0x42

Operator &&.

• #define OP_OR 0x43

Operator ||.

• #define OP_BNOT 0x51

Operator ∼.

• #define OP_BAND 0x52

Operator &.

• #define OP_BOR 0x53

Operator |.

• #define OP_BXOR 0x54

Operator ∧.

• #define OP_INT8 0x61

8 bit immediate value, data follows

Barrelfish Demultiplexer

16.5 bfdmux/src/include/filter.h File Reference 95

• #define OP_INT16 0x62

16 bit immediate value, data follows

• #define OP_INT32 0x63

32 bit immediate value, data follows

• #define OP_INT64 0x64

64 bit immediate value, data follows

• #define OP_LOAD8 0x71

8 bit indirect value, location follows

• #define OP_LOAD16 0x72

16 bit indirect value, location follows

• #define OP_LOAD32 0x73

32 bit indirect value, location follows

• #define OP_LOAD64 0x74

64 bit indirect value, location follows

Functions

• int get_receipient_list (struct client_app ∗∗app_table, int app_cnt, uint8_-
t ∗packet_data, int packet_len, struct client_app ∗∗∗hits, filterid_t ∗∗fids)

Filters a packet with all filters of all applications.

• void new_packet_event (void ∗packet, int len)

Event handler for new packet data.

16.5.1 Detailed Description

Application registration API.

This file contains defintitions for the bfdmux application register.

Definition in file filter.h.

16.5.2 Define Documentation

16.5.2.1 #define OP_AND 0x42

Operator &&.

bfdmux

96 File Documentation

Expects an additional 32bit word before the two operands holding the code size of the
first operand subtree in bytes. This is used to speed up filter execution when the first
operand already determines the result of the operation, e.g. false && something.

Definition at line 54 of file filter.h.

16.5.2.2 #define OP_OR 0x43

Operator ||.

Expects an additional 32bit word before the two operands holding the code size of the
first operand subtree in bytes. This is used to speed up filter execution when the first
operand already determines the result of the operation, e.g. true || something.

Definition at line 63 of file filter.h.

16.5.3 Function Documentation

16.5.3.1 int get_receipient_list (struct client_app ∗∗ app_table, int app_cnt,
uint8_t ∗ packet_data, int packet_len, struct client_app ∗∗∗ hits,
filterid_t ∗∗ fids)

Filters a packet with all filters of all applications.

Parameters:

app_table The list of applications that are registered

app_cnt The number of applications in the list

packet_data Pointer to the raw packet data

packet_len Length of packet data in bytes

→ hits Points to an array of applications that had a least one matching filter.
Should be pointing to a NULL pointer initially.

→ fids Points to an array of the filter id of each application that matched the
packet. Should be pointing to a NULL pointer initially.

Returns:

Number of applications with matching filters (length of ’hits’). If zero, hits has not
been modified and might be invalid.

Definition at line 31 of file filter.c.

Here is the call graph for this function:

get_receipient_list execute_filter calc

Barrelfish Demultiplexer

16.5 bfdmux/src/include/filter.h File Reference 97

Here is the caller graph for this function:

get_receipient_list new_packet_event main

16.5.3.2 void new_packet_event (void ∗ packet, int len)

Event handler for new packet data.

This function will be called by bfdmux, whenever a new data packet has arrived. It
invokes all filters on the packet data and tries to copy the packet to the application
input buffers, if one of the applications filters matched.

Parameters:

packet pointer to packet data

len length of packet data in bytes

Definition at line 132 of file filter.c.

Here is the call graph for this function:

new_packet_event

forward_packet_to_client

get_receipient_list

remove_app

rwlock_acquire

rwlock_release

write_bytes

execute_filter calc

find_app_in_table

remove_filter

Here is the caller graph for this function:

new_packet_event main

bfdmux

98 File Documentation

16.6 bfdmux/src/include/netif.h File Reference

Interface file to the network card.

Include dependency graph for netif.h:

bfdmux/src/include/netif.h

bfdmux.h

debug.h

Functions

• err_t init_nic_interface ()

Initialize the network card interface.

• err_t close_nic_interface ()

Close the network driver.

• err_t nic_send (void ∗buff, size_t len)

Send packets out to the world on the outbound message queue.

16.6.1 Detailed Description

Interface file to the network card.

This file must be included from your own network card implementation. It defines
global functions that get used by other parts of the project.

Definition in file netif.h.

16.6.2 Function Documentation

16.6.2.1 err_t close_nic_interface ()

Close the network driver.

Returns:

ERR_OK on success

Definition at line 92 of file mqif.c.

Barrelfish Demultiplexer

16.6 bfdmux/src/include/netif.h File Reference 99

Here is the caller graph for this function:

close_nic_interface quit

main

psend2bfdmux main

16.6.2.2 err_t init_nic_interface ()

Initialize the network card interface.

Set up signal handler and initialize the message queue to receive packets from the
NIC.

Returns:

ERR_OK on success, ERR_FATAL on a fatal error.

Definition at line 51 of file mqif.c.

Here is the call graph for this function:

init_nic_interface signal_handler demux

check_demuxer_idle_and_lock

rwlock_release

rwlock_acquire

Here is the caller graph for this function:

init_nic_interface main

16.6.2.3 err_t nic_send (void ∗ buff, size_t len)

Send packets out to the world on the outbound message queue.

Parameters:

buff Pointer to the data array

len Number of bytes to send starting at ’buff’

Returns:

ERR_OK on success, ERR_FATAL on error

Definition at line 144 of file mqif.c.

bfdmux

100 File Documentation

Here is the caller graph for this function:

nic_send new_message_event run main

Barrelfish Demultiplexer

16.7 bfdmux/src/include/netif/mqif.h File Reference 101

16.7 bfdmux/src/include/netif/mqif.h File Reference

Header file for the example network interface.

Include dependency graph for mqif.h:

bfdmux/src/include/netif/mqif.h

netif.h

bfdmux.h

debug.h

Data Structures

• struct nic_message_buf
Message queue buffer.

Defines

• #define BFDMUXPIDFILE "/tmp/.bfdmux.pid"
Location of the PID file of bfdmux.

• #define SIGNICINTERRUPT 29
Signal number to wake up the NIC.

• #define NIC_OUT_MQ_KEY 0x9abcdef0;
Outbound message queue key.

• #define NIC_IN_MQ_KEY 0x12345678;
Inbound message queue key.

• #define NIC_MQ_SIZE 1500
Message queue size.

16.7.1 Detailed Description

Header file for the example network interface.

Definition in file mqif.h.

bfdmux

102 File Documentation

16.8 bfdmux/src/include/opdefs.h File Reference

Header file for opcode definitions.

Include dependency graph for opdefs.h:

bfdmux/src/include/opdefs.h

filter.h

bfdmux.h

register.h

debug.h

libbfdmux.h

bfdmux_ciprot.h tools.h

Data Structures

• struct op_def_t

Defines a type for operator definition entries.

Defines

• #define MAX_OPERATOR_STRING_LENGTH 9

Maximum length of an operator string in characters.

Variables

• op_def_t op_list []

List of operators and opcodes.

16.8.1 Detailed Description

Header file for opcode definitions.

Barrelfish Demultiplexer

16.8 bfdmux/src/include/opdefs.h File Reference 103

Definition in file opdefs.h.

16.8.2 Variable Documentation

16.8.2.1 op_def_t op_list[]

List of operators and opcodes.

Operators with lower indices have lower precedence.

Warning:

If one operator string is contained in another one, the longer opstring needs to
reside in a lower index in the array! Example: "<" and "<=". If this is not the
case the string "4 <= 5" will be split into "4" < "= 5", which will lead to a compile
error in the right subexpression!

Note:

For OP_OR and OP_AND
5 specifies that 4 extra bytes should be left after the opcode: they will hold the left
subtree length for skipping the right subtree evaluation if possible.
The empty operator signals the end of the operator list, do not remove it!

Definition at line 21 of file opdefs.c.

bfdmux

104 File Documentation

16.9 bfdmux/src/include/register.h File Reference

Application registration API.

Include dependency graph for register.h:

bfdmux/src/include/register.h

libbfdmux.h

bfdmux.h

filter.h

bfdmux_ciprot.h tools.h

debug.h

Data Structures

• struct filter

Encapsulates filter code and it’s length.

• struct client_app

Holds all information about a registered application.

Functions

• void init_app_register (void)

Initializes the application register app_table.

• void destroy_app_register (void)

Cleans up application register app_table.

• void add_app (sock_t command_socket, void ∗shmaddr_in, size_t shmsize_in,
void ∗shmaddr_out, size_t shmsize_out)

Adds an application to the application list.

• void remove_app (sock_t command_socket)

Removes an application from the application list.

• filterid_t add_filter (sock_t command_socket, uint8_t ∗filter_code, int filter_-
len)

Adds a filter for a specific application (identified by it’s socket).

Barrelfish Demultiplexer

16.9 bfdmux/src/include/register.h File Reference 105

• void remove_filter (sock_t command_socket, filterid_t filterid)

Removes a filter for an application.

• int find_app_in_table (struct client_app ∗∗table, int table_len, int command_-
socket)

Searches for the application’s index given it’s command socket handle.

Variables

• struct client_app ∗∗ app_table

Global table of connected client applications.

• int num_apps

Length of app_table.

• int app_table_lock

An rwlock handle that should be acquired before reading from or writing to the ap-
plication list.

16.9.1 Detailed Description

Application registration API.

This file contains defintitions for the bfdmux application register.

Definition in file register.h.

16.9.2 Function Documentation

16.9.2.1 void add_app (sock_t command_socket, void ∗ shmaddr_in, size_t
shmsize_in, void ∗ shmaddr_out, size_t shmsize_out)

Adds an application to the application list.

Parameters:

command_socket Handle of command connection. Used to identify the applica-
tion.

shmaddr_in Pointer to input (NIC to application) buffer in shared memory

shmsize_in Size of input buffer

shmaddr_out Pointer to output (application to NIC) buffer in shared memory

shmsize_out Size of output buffer

bfdmux

106 File Documentation

Definition at line 61 of file register.c.

Here is the caller graph for this function:

add_app new_client_event run main

16.9.2.2 filterid_t add_filter (sock_t command_socket, uint8_t ∗ filter_code, int
filter_len)

Adds a filter for a specific application (identified by it’s socket).

Parameters:

command_socket Identifies the application by it’s command connection handle

filter_code Pointer to the code block of the filter

filter_len Length of filter byte code

Returns:

Identifier of the filter (equal to it’s index in the filter array)

Definition at line 110 of file register.c.

Here is the call graph for this function:

add_filter find_app_in_table

Here is the caller graph for this function:

add_filter new_message_event run main

16.9.2.3 int find_app_in_table (struct client_app ∗∗ table, int table_len, int
command_socket)

Searches for the application’s index given it’s command socket handle.

Parameters:

table the application list to search in

table_len length of the list

command_socket the command socket handle to look for

Barrelfish Demultiplexer

16.9 bfdmux/src/include/register.h File Reference 107

Returns:

the index of the application we found; -1 if none

Definition at line 296 of file register.c.

Here is the caller graph for this function:

find_app_in_table

add_filter

remove_app

remove_filter

new_message_event run

main

new_packet_event

16.9.2.4 void remove_app (sock_t command_socket)

Removes an application from the application list.

Removes any filters registered by this application and then removes the application
from the list.

Parameters:

command_socket Identifies the application via it’s command connection socket

Definition at line 171 of file register.c.

Here is the call graph for this function:

remove_app find_app_in_table

remove_filter

Here is the caller graph for this function:

remove_app

new_packet_event

run

main

16.9.2.5 void remove_filter (sock_t command_socket, filterid_t filter_id)

Removes a filter for an application.

Parameters:

command_socket Identifies the application via it’s command connection handle

filter_id Identifier of the filter to be removed

bfdmux

108 File Documentation

Definition at line 231 of file register.c.

Here is the call graph for this function:

remove_filter find_app_in_table

Here is the caller graph for this function:

remove_filter

new_message_event

remove_app

run

main

new_packet_event

Barrelfish Demultiplexer

16.10 bfdmux/src/include/server.h File Reference 109

16.10 bfdmux/src/include/server.h File Reference

Server thread header file.

Include dependency graph for server.h:

bfdmux/src/include/server.h

bfdmux.h

register.h

debug.h

libbfdmux.h filter.h

bfdmux_ciprot.h tools.h

Defines

• #define MAX_PENDING 10
Maximum number of pending, non-accepted connections on the listen socket.

• #define MAX_COMMAND_BUFFER_SIZE 100000
Limits the size of a command packet, e.g. including a filter string.

• #define TIMEOUT_SEC 100
Timeout for select command in the server loop.

Functions

• sock_t initialize_server ()
Initializes and opens the servers listen socket.

• err_t close_server (pthread_t server_thread, sock_t server_socket)
Closes the servers listen socket.

• void ∗ run (void ∗socket)
Main server function.

• err_t forward_packet_to_client (uint8_t ∗packet_data, int packet_len, struct
client_app ∗receipient, filterid_t fid)

bfdmux

110 File Documentation

Forwards a packet to a single client.

16.10.1 Detailed Description

Server thread header file.

Definition in file server.h.

16.10.2 Function Documentation

16.10.2.1 err_t close_server (pthread_t server_thread, sock_t server_socket)

Closes the servers listen socket.

This closes command connections to all applications, detaches shared memory buffers
and destroys the application register.

Parameters:

server_thread Server thread that has to be killed
server_socket The handle to the server socket

Returns:

ERR_OK on success

Definition at line 233 of file server.c.

Here is the call graph for this function:

close_server

destroy_app_register

rwlock_acquire

rwlock_release

rwlock_destroy

Here is the caller graph for this function:

close_server quit

main

psend2bfdmux main

16.10.2.2 err_t forward_packet_to_client (uint8_t ∗ packet_data, int packet_len,
struct client_app ∗ receipient, filterid_t fid)

Forwards a packet to a single client.

Barrelfish Demultiplexer

16.10 bfdmux/src/include/server.h File Reference 111

Parameters:

packet_data Pointer to data to forward

packet_len Length of packet data in bytes

receipient Destination application that receives the data

fid Identifier of the filter that matched the packet

Returns:

ERR_OK on success, ERR_DISCONNECT if the caller should disconnect and
remove the application, other error types on failure.

Definition at line 759 of file server.c.

Here is the call graph for this function:

forward_packet_to_client write_bytes

Here is the caller graph for this function:

forward_packet_to_client new_packet_event main

16.10.2.3 sock_t initialize_server ()

Initializes and opens the servers listen socket.

Returns:

Returns the handle of the listen socket

Definition at line 148 of file server.c.

Here is the call graph for this function:

initialize_server init_app_register rwlock_create

Here is the caller graph for this function:

initialize_server main

bfdmux

112 File Documentation

16.10.2.4 void∗ run (void ∗ socket)

Main server function.

Contains the run loop of the server thread that waits for changes on the client command
connections. If any changes on the socket descriptor set occurr, a handler function is
called.

Parameters:

socket The listen socket

Definition at line 272 of file server.c.

Here is the call graph for this function:

run

new_client_event

rwlock_elevate

rwlock_lower

new_message_event

remove_app

rwlock_acquire

rwlock_release

add_app

add_filter

cmd_get

cmd_get_size

compile_filter

get_error_position_string

nic_send

read_bytes

remove_filter

write_bytes

find_app_in_table

compile_subtree

ensure_enough_space

find_msb

find_operator

remove_spaces_and_braces

Here is the caller graph for this function:

run main

Barrelfish Demultiplexer

16.11 bfdmux/src/include/vm.h File Reference 113

16.11 bfdmux/src/include/vm.h File Reference

Interface for filter execution virtual machine.

Include dependency graph for vm.h:

bfdmux/src/include/vm.h

filter.h

bfdmux.h

register.h

debug.h

libbfdmux.h

bfdmux_ciprot.h tools.h

Defines

• #define ERR_BAD_OP -1
Execution failed because of an unknown opcode.

• #define ERR_BAD_ACCESS -2
Filter did not match because it tried to access a non existing location in the packet.

• #define ERR_UNKNOWN -3
An unknown internal error occurred during the execution.

Typedefs

• typedef uint8_t op_t
Define opcode type as single byte.

Functions

• bool execute_filter (uint8_t ∗filter_code, int filter_len, uint8_t ∗packet_data, int
packet_len, int ∗error_out)

bfdmux

114 File Documentation

Executes the specified filter on the given packet.

16.11.1 Detailed Description

Interface for filter execution virtual machine.

Definition in file vm.h.

16.11.2 Function Documentation

16.11.2.1 bool execute_filter (uint8_t ∗ filter_code, int filter_len, uint8_t ∗
packet_data, int packet_len, int ∗ error_out)

Executes the specified filter on the given packet.

Parameters:

filter_code Points to the filters byte code

filter_len Length of the byte code

packet_data Points to the packet data to run the filter on

packet_len Length of packet data in bytes

→ error_out Error information upon failure during execution

Returns:

true, if the filter executed successfully and the result was not zero. false otherwise.

Definition at line 344 of file vm.c.

Here is the call graph for this function:

execute_filter calc

Here is the caller graph for this function:

execute_filter get_receipient_list new_packet_event main

Barrelfish Demultiplexer

16.12 bfdmux/src/netif/mqif.c File Reference 115

16.12 bfdmux/src/netif/mqif.c File Reference

Sample network interface driver using two (in, out) message queues.

Include dependency graph for mqif.c:

bfdmux/src/netif/mqif.c

netif/mqif.h

bfdmux.h

filter.h rwlock.h

netif.h

debug.h

register.h

libbfdmux.h

bfdmux_ciprot.h tools.h

Defines

• #define NUM_BUFS (PROC_QUEUE_LEN + 1)

Define a certain number of buffers to allow a little queueing.

Functions

• void signal_handler (int signum)

Signal handler that handles incoming packets (interrupted by a signal).

• err_t init_nic_interface ()

Initialize the network card interface.

• err_t close_nic_interface ()

Close the network driver.

• err_t nic_send (void ∗buff, size_t len)

Send packets out to the world on the outbound message queue.

bfdmux

116 File Documentation

Variables

• struct sigaction sa

Signal handler structure.

• mq_t mq_in

Inbound (NIC to bfdmux) message queue ID.

• mq_t mq_out

Outbound (bfdmux to NIC) message queue ID.

• struct nic_message_buf mbuf [NUM_BUFS]

Message buffer array.

• int current_buf

Buffer to use (pay attention: don’t overwrite a buffer that is being processed!).

16.12.1 Detailed Description

Sample network interface driver using two (in, out) message queues.

This network interface driver is used for testing purposes. It comes with the msgq_-
loopback project which is a simple loopback interface. This driver is implemented
using message queues. When a packet is sent to this NIC, a signal a must be sent in
addition to wake it up (just like real NICs with interrupts).

Definition in file mqif.c.

16.12.2 Define Documentation

16.12.2.1 #define NUM_BUFS (PROC_QUEUE_LEN + 1)

Define a certain number of buffers to allow a little queueing.

Note:

This should always be 1 larger than the request buffer ’PROC_QUEUE_LEN’ of
bfdmux, otherwise packets will be silently overridden during processing!

Definition at line 32 of file mqif.c.

16.12.3 Function Documentation

16.12.3.1 err_t close_nic_interface ()

Close the network driver.

Barrelfish Demultiplexer

16.12 bfdmux/src/netif/mqif.c File Reference 117

Returns:

ERR_OK on success

Definition at line 92 of file mqif.c.

Here is the caller graph for this function:

close_nic_interface quit

main

psend2bfdmux main

16.12.3.2 err_t init_nic_interface ()

Initialize the network card interface.

Set up signal handler and initialize the message queue to receive packets from the
NIC.

Returns:

ERR_OK on success, ERR_FATAL on a fatal error.

Definition at line 51 of file mqif.c.

Here is the call graph for this function:

init_nic_interface signal_handler demux

check_demuxer_idle_and_lock

rwlock_release

rwlock_acquire

Here is the caller graph for this function:

init_nic_interface main

16.12.3.3 err_t nic_send (void ∗ buff, size_t len)

Send packets out to the world on the outbound message queue.

Parameters:

buff Pointer to the data array
len Number of bytes to send starting at ’buff’

Returns:

ERR_OK on success, ERR_FATAL on error

bfdmux

118 File Documentation

Definition at line 144 of file mqif.c.

Here is the caller graph for this function:

nic_send new_message_event run main

16.12.3.4 void signal_handler (int signum)

Signal handler that handles incoming packets (interrupted by a signal).

This is the signal/interrupt handler. After receiving data from the message queue the
filter is invoked.

Parameters:

signum The signal number (should be SIGNICINTERRUPT)

Definition at line 108 of file mqif.c.

Here is the call graph for this function:

signal_handler demux

check_demuxer_idle_and_lock

rwlock_release

rwlock_acquire

Here is the caller graph for this function:

signal_handler init_nic_interface main

Barrelfish Demultiplexer

16.13 bfdmux/src/opdefs.c File Reference 119

16.13 bfdmux/src/opdefs.c File Reference

Bfdmux core functionality.

Include dependency graph for opdefs.c:

bfdmux/src/opdefs.c

opdefs.h

filter.h

bfdmux.h

register.h

debug.h

libbfdmux.h

Variables

• op_def_t op_list []

List of operators and opcodes.

16.13.1 Detailed Description

Bfdmux core functionality.

Operator precedence definition and opcode/opstring binding

Definition in file opdefs.c.

16.13.2 Variable Documentation

16.13.2.1 op_def_t op_list[]

Initial value:

{

bfdmux

120 File Documentation

{"||", OP_OR, 5, 0x11}
,
{"&&", OP_AND, 5, 0x11}
,
{"|", OP_BOR, 1, 0x11}
,
{"^", OP_BXOR, 1, 0x11}
,
{"&", OP_BAND, 1, 0x11}
,
{"==", OP_EQUAL, 1, 0x11}
,
{"!=", OP_UNEQUAL, 1, 0x11}
,
{">=", OP_SGREATEREQUAL, 1, 0x11}
,
{"<=", OP_SLESSEQUAL, 1, 0x11}
,
{"}=", OP_UGREATEREQUAL, 1, 0x11}
,
{"{=", OP_ULESSEQUAL, 1, 0x11}
,
{">", OP_SGREATER, 1, 0x11}
,
{"<", OP_SLESS, 1, 0x11}
,
{"}", OP_UGREATER, 1, 0x11}
,
{"{", OP_ULESS, 1, 0x11}
,
{"+", OP_ADD, 1, 0x11}
,
{"-", OP_SUB, 1, 0x11}
,
{"*", OP_MULT, 1, 0x11}
,
{"/", OP_IDIV, 1, 0x11}
,
{"%", OP_MOD, 1, 0x11}
,
{"!", OP_NOT, 1, 0x01}
,
{"~", OP_BNOT, 1, 0x01}
,
{"int8", OP_LOAD8, 1, 0x01}
,
{"int16", OP_LOAD16, 1, 0x01}
,
{"int32", OP_LOAD32, 1, 0x01}
,
{"int64", OP_LOAD64, 1, 0x01}
,
{"", 0, 0, 0}

}

List of operators and opcodes.

Operators with lower indices have lower precedence.

Warning:

If one operator string is contained in another one, the longer opstring needs to

Barrelfish Demultiplexer

16.13 bfdmux/src/opdefs.c File Reference 121

reside in a lower index in the array! Example: "<" and "<=". If this is not the
case the string "4 <= 5" will be split into "4" < "= 5", which will lead to a compile
error in the right subexpression!

Note:

For OP_OR and OP_AND
5 specifies that 4 extra bytes should be left after the opcode: they will hold the left
subtree length for skipping the right subtree evaluation if possible.
The empty operator signals the end of the operator list, do not remove it!

Definition at line 21 of file opdefs.c.

bfdmux

122 File Documentation

16.14 bfdmux/src/register.c File Reference

Application registration API.

Include dependency graph for register.c:

bfdmux/src/register.c

rwlock.h register.h

bfdmux.h

libbfdmux.h filter.h

bfdmux_ciprot.h tools.h

debug.h

Functions

• void init_app_register (void)
Initializes the application register app_table.

• void destroy_app_register (void)
Cleans up application register app_table.

• void add_app (sock_t command_socket, void ∗shmaddr_in, size_t shmsize_in,
void ∗shmaddr_out, size_t shmsize_out)

Adds an application to the application list.

• filterid_t add_filter (sock_t command_socket, uint8_t ∗filter_code, int filter_-
len)

Adds a filter for a specific application (identified by it’s socket).

• void remove_app (sock_t command_socket)
Removes an application from the application list.

• void remove_filter (sock_t command_socket, filterid_t filter_id)
Removes a filter for an application.

• int find_app_in_table (struct client_app ∗∗table, int table_len, int command_-
socket)

Searches for the application’s index given it’s command socket handle.

Barrelfish Demultiplexer

16.14 bfdmux/src/register.c File Reference 123

Variables

• struct client_app ∗∗ app_table

Global table of connected client applications.

• int num_apps

Length of app_table.

• int app_table_lock

An rwlock handle that should be acquired before reading from or writing to the ap-
plication list.

16.14.1 Detailed Description

Application registration API.

This file contains the implementation of the bfdmux application register.

Definition in file register.c.

16.14.2 Function Documentation

16.14.2.1 void add_app (sock_t command_socket, void ∗ shmaddr_in, size_t
shmsize_in, void ∗ shmaddr_out, size_t shmsize_out)

Adds an application to the application list.

Parameters:

command_socket Handle of command connection. Used to identify the applica-
tion.

shmaddr_in Pointer to input (NIC to application) buffer in shared memory

shmsize_in Size of input buffer

shmaddr_out Pointer to output (application to NIC) buffer in shared memory

shmsize_out Size of output buffer

Definition at line 61 of file register.c.

Here is the caller graph for this function:

add_app new_client_event run main

bfdmux

124 File Documentation

16.14.2.2 filterid_t add_filter (sock_t command_socket, uint8_t ∗ filter_code, int
filter_len)

Adds a filter for a specific application (identified by it’s socket).

Parameters:

command_socket Identifies the application by it’s command connection handle
filter_code Pointer to the code block of the filter
filter_len Length of filter byte code

Returns:

Identifier of the filter (equal to it’s index in the filter array)

Definition at line 110 of file register.c.

Here is the call graph for this function:

add_filter find_app_in_table

Here is the caller graph for this function:

add_filter new_message_event run main

16.14.2.3 int find_app_in_table (struct client_app ∗∗ table, int table_len, int
command_socket)

Searches for the application’s index given it’s command socket handle.

Parameters:

table the application list to search in
table_len length of the list
command_socket the command socket handle to look for

Returns:

the index of the application we found; -1 if none

Definition at line 296 of file register.c.

Here is the caller graph for this function:

find_app_in_table

add_filter

remove_app

remove_filter

new_message_event run

main

new_packet_event

Barrelfish Demultiplexer

16.14 bfdmux/src/register.c File Reference 125

16.14.2.4 void remove_app (sock_t command_socket)

Removes an application from the application list.

Removes any filters registered by this application and then removes the application
from the list.

Parameters:

command_socket Identifies the application via it’s command connection socket

Definition at line 171 of file register.c.

Here is the call graph for this function:

remove_app find_app_in_table

remove_filter

Here is the caller graph for this function:

remove_app

new_packet_event

run

main

16.14.2.5 void remove_filter (sock_t command_socket, filterid_t filter_id)

Removes a filter for an application.

Parameters:

command_socket Identifies the application via it’s command connection handle

filter_id Identifier of the filter to be removed

Definition at line 231 of file register.c.

Here is the call graph for this function:

remove_filter find_app_in_table

Here is the caller graph for this function:

remove_filter

new_message_event

remove_app

run

main

new_packet_event

bfdmux

126 File Documentation

16.15 bfdmux/src/server.c File Reference

Client application interface.

Include dependency graph for server.c:

bfdmux/src/server.c

bfdmux_ciprot.h

server.h

register.h codegen.h netif.h

rwlock.h

bfdmux.h

debug.h

libbfdmux.h filter.h

tools.h

Functions

• err_t new_client_event (sock_t server_socket)
Event handler for newly connected application.

• err_t new_message_event (int app_id)
Event handler for new data on an applications socket.

• void sighandler (int signum)
Generic signal handler. Doesn’t do anything at the moment.

• bool read_bytes (sock_t socket, void ∗buf, int length)
Reads bytes from a given socket.

• bool write_bytes (sock_t socket, void ∗buf, int length)
Writes bytes to the given socket.

• sock_t initialize_server ()
Initializes and opens the servers listen socket.

• err_t close_server (pthread_t server_thread, sock_t server_socket)
Closes the servers listen socket.

Barrelfish Demultiplexer

16.15 bfdmux/src/server.c File Reference 127

• void ∗ run (void ∗socket)
Main server function.

• err_t forward_packet_to_client (uint8_t ∗packet_data, int packet_len, struct
client_app ∗receipient, filterid_t fid)

Forwards a packet to a single client.

Variables

• struct sigaction sigact
Signal handler for broken pipe signal.

16.15.1 Detailed Description

Client application interface.

This file implements the server that provides the socket connection for client applica-
tions.

Definition in file server.c.

16.15.2 Function Documentation

16.15.2.1 err_t close_server (pthread_t server_thread, sock_t server_socket)

Closes the servers listen socket.

This closes command connections to all applications, detaches shared memory buffers
and destroys the application register.

Parameters:

server_thread Server thread that has to be killed
server_socket The handle to the server socket

Returns:

ERR_OK on success

Definition at line 233 of file server.c.

Here is the call graph for this function:

close_server

destroy_app_register

rwlock_acquire

rwlock_release

rwlock_destroy

bfdmux

128 File Documentation

Here is the caller graph for this function:

close_server quit

main

psend2bfdmux main

16.15.2.2 err_t forward_packet_to_client (uint8_t ∗ packet_data, int packet_len,
struct client_app ∗ receipient, filterid_t fid)

Forwards a packet to a single client.

Parameters:

packet_data Pointer to data to forward

packet_len Length of packet data in bytes

receipient Destination application that receives the data

fid Identifier of the filter that matched the packet

Returns:

ERR_OK on success, ERR_DISCONNECT if the caller should disconnect and
remove the application, other error types on failure.

Definition at line 759 of file server.c.

Here is the call graph for this function:

forward_packet_to_client write_bytes

Here is the caller graph for this function:

forward_packet_to_client new_packet_event main

16.15.2.3 sock_t initialize_server ()

Initializes and opens the servers listen socket.

Returns:

Returns the handle of the listen socket

Barrelfish Demultiplexer

16.15 bfdmux/src/server.c File Reference 129

Definition at line 148 of file server.c.

Here is the call graph for this function:

initialize_server init_app_register rwlock_create

Here is the caller graph for this function:

initialize_server main

16.15.2.4 err_t new_client_event (sock_t server_socket)

Event handler for newly connected application.

Invoked by the servers main loop if a new connection from a client application has been
established.

Warning:

The function assumes to have a valid read lock on the application table

Parameters:

server_socket The server socket that received the new connection

Returns:

ERR_OK on success, other error types on failure

Definition at line 374 of file server.c.

Here is the call graph for this function:

new_client_event

add_app

rwlock_elevate

rwlock_lower

Here is the caller graph for this function:

new_client_event run main

bfdmux

130 File Documentation

16.15.2.5 err_t new_message_event (int app_id)

Event handler for new data on an applications socket.

Parameters:

app_id Index of the application in the table from which we received a new com-
mand

Returns:

ERR_OK on success, ERR_DISCONNECT if the application should be discon-
nected and removed by the caller; other error types on failure.

Definition at line 408 of file server.c.

Here is the call graph for this function:

new_message_event

add_filter

cmd_get

cmd_get_size

compile_filter

get_error_position_string

nic_send

read_bytes

remove_filter

rwlock_elevate

rwlock_lower

write_bytes

find_app_in_table

compile_subtree

ensure_enough_space

find_msb

find_operator

remove_spaces_and_braces

substrfind

Here is the caller graph for this function:

new_message_event run main

16.15.2.6 bool read_bytes (sock_t socket, void ∗ buf, int length)

Reads bytes from a given socket.

Barrelfish Demultiplexer

16.15 bfdmux/src/server.c File Reference 131

Parameters:

socket The socket handle to read from

buf The buffer to write to, if data is received

length The number of bytes to read. Will block until this number of bytes have
arrived.

Returns:

true, if the specified number of bytes could be read, otherwise false.

Note:

Specifying zero as length will return true and return immediately.

Definition at line 76 of file server.c.

Here is the caller graph for this function:

read_bytes new_message_event run main

16.15.2.7 void∗ run (void ∗ socket)

Main server function.

Contains the run loop of the server thread that waits for changes on the client command
connections. If any changes on the socket descriptor set occurr, a handler function is
called.

Parameters:

socket The listen socket

Definition at line 272 of file server.c.

bfdmux

132 File Documentation

Here is the call graph for this function:

run

new_client_event

rwlock_elevate

rwlock_lower

new_message_event

remove_app

rwlock_acquire

rwlock_release

add_app

add_filter

cmd_get

cmd_get_size

compile_filter

get_error_position_string

nic_send

read_bytes

remove_filter

write_bytes

find_app_in_table

compile_subtree

ensure_enough_space

find_msb

find_operator

remove_spaces_and_braces

Here is the caller graph for this function:

run main

16.15.2.8 void sighandler (int signum)

Generic signal handler. Doesn’t do anything at the moment.

Parameters:

signum The number of the signal for which the handler was invoked

Definition at line 60 of file server.c.

16.15.2.9 bool write_bytes (sock_t socket, void ∗ buf, int length)

Writes bytes to the given socket.

Parameters:

socket The connection to write to

Barrelfish Demultiplexer

16.15 bfdmux/src/server.c File Reference 133

buf Pointer to the data

length The number of bytes to write

Returns:

true, if the specified number of bytes could be written, false otherwise.

Definition at line 110 of file server.c.

Here is the caller graph for this function:

write_bytes

forward_packet_to_client

new_message_event

new_packet_event

main

run

bfdmux

134 File Documentation

16.16 bfdmux/src/vm.c File Reference

Implements a virtual machine for executing compiled intermediate language byte code.

Include dependency graph for vm.c:

bfdmux/src/vm.c

vm.h

bfdmux.h

filter.h

register.h

debug.h

libbfdmux.h

Functions

• err_t calc (uint8_t ∗filter_code, int filter_len, uint8_t ∗packet_data, int packet_-
len, uint64_t ∗result_value, size_t ∗result_offset)

Performs recursive execution of a subtree of the filter code.

• bool execute_filter (uint8_t ∗filter_code, int filter_len, uint8_t ∗packet_data, int
packet_len, int ∗error_out)

Executes the specified filter on the given packet.

16.16.1 Detailed Description

Implements a virtual machine for executing compiled intermediate language byte code.

Definition in file vm.c.

Barrelfish Demultiplexer

16.16 bfdmux/src/vm.c File Reference 135

16.16.2 Function Documentation

16.16.2.1 err_t calc (uint8_t ∗ filter_code, int filter_len, uint8_t ∗ packet_data,
int packet_len, uint64_t ∗ result_value, size_t ∗ result_offset)

Performs recursive execution of a subtree of the filter code.

Parameters:

filter_code Points to the begining of the filter code

filter_len Specifies the length of the filter code in bytes

packet_data Points to the packet data to run the filter on

packet_len Specifies the length of the packet data in bytes

→ result_value Return value of the subtree execution

← result_offset Initially specifies the offset of the next byte to be executed in the
filter code

→ result_offset Specifies the next code byte to be executed, after the entire sub-
tree code was executed

Returns:

ERR_OK on success, other error values on failure; see header file for error types.

Definition at line 37 of file vm.c.

Here is the caller graph for this function:

calc execute_filter get_receipient_list new_packet_event main

16.16.2.2 bool execute_filter (uint8_t ∗ filter_code, int filter_len, uint8_t ∗
packet_data, int packet_len, int ∗ error_out)

Executes the specified filter on the given packet.

Parameters:

filter_code Points to the filters byte code

filter_len Length of the byte code

packet_data Points to the packet data to run the filter on

packet_len Length of packet data in bytes

→ error_out Error information upon failure during execution

Returns:

true, if the filter executed successfully and the result was not zero. false otherwise.

bfdmux

136 File Documentation

Definition at line 344 of file vm.c.

Here is the call graph for this function:

execute_filter calc

Here is the caller graph for this function:

execute_filter get_receipient_list new_packet_event main

Barrelfish Demultiplexer

16.17 libbfdmux/bfdmuxchat/bfdmuxchat.c File Reference 137

16.17 libbfdmux/bfdmuxchat/bfdmuxchat.c File Refer-
ence

Sample chat application.

Include dependency graph for bfdmuxchat.c:

libbfdmux/bfdmuxchat/bfdmuxchat.c

libbfdmux.h

bfdmux.h

bfdmux_ciprot.h tools.h

debug.h

Functions

• void new_msg (void ∗msg, size_t len, filterid_t id)
Event handler that gets called upon incoming packets.

• void quit (int signum)
Destructor/Signal handler for CTRL+C keystork.

• int main ()
Main routine.

16.17.1 Detailed Description

Sample chat application.

This is is sample application using the libbfdmux library. Launch multiple instances to
chat over bfdmux.

Definition in file bfdmuxchat.c.

16.17.2 Function Documentation

16.17.2.1 int main ()

Main routine.

bfdmux

138 File Documentation

This function registers the application at the bfdmux instance, asks the user for a nick-
name and builds the filter upon it. The filter will match all packets where the first byte
is different to the first byte in the nickname. The filter gets attached and we jump into
an endless chat loop.

Definition at line 79 of file bfdmuxchat.c.

Here is the call graph for this function:

main

attach

bfdmux_send

new_msg

quit

register_app

bfdmux_ci_send

cmd_check

recv_answer

close_nic_interface

close_server rwlock_destroy

destroy_app_register

rwlock_acquire

rwlock_release

bfdmux_set_recv_callback

server_thread_start

16.17.2.2 void new_msg (void ∗ msg, size_t len, filterid_t id)

Event handler that gets called upon incoming packets.

Parameters:

msg Pointer to chat message

len Message length

id Filter ID that matched for this packet

Definition at line 42 of file bfdmuxchat.c.

Here is the caller graph for this function:

new_msg main

16.17.2.3 void quit (int signum)

Destructor/Signal handler for CTRL+C keystork.

Barrelfish Demultiplexer

16.17 libbfdmux/bfdmuxchat/bfdmuxchat.c File Reference 139

Parameters:

signum Signal that fired this signal handler (should be SIGINT)

Definition at line 57 of file bfdmuxchat.c.

Here is the call graph for this function:

quit

detach

unregister_app

bfdmux_ci_send

cmd_check

recv_answer

bfdmux

140 File Documentation

16.18 libbfdmux/bfdmuxchat/msgq_-
loopback/src/msgq_clear.c File Reference

Clean all message queues.

Include dependency graph for msgq_clear.c:

libbfdmux/bfdmuxchat/msgq_loopback/src/msgq_clear.c

netif/mqif.h

netif.h

bfdmux.h

debug.h

16.18.1 Detailed Description

Clean all message queues.

This application cleans all message queues that get used by the message queue interface
from bfdmux.

Definition in file msgq_clear.c.

Barrelfish Demultiplexer

16.19 libbfdmux/bfdmuxchat/msgq_loopback/src/msgq_loopback.c File
Reference 141

16.19 libbfdmux/bfdmuxchat/msgq_-
loopback/src/msgq_loopback.c File Reference

Message queue loopback.

Include dependency graph for msgq_loopback.c:

libbfdmux/bfdmuxchat/msgq_loopback/src/msgq_loopback.c

netif/mqif.h

netif.h

bfdmux.h

debug.h

16.19.1 Detailed Description

Message queue loopback.

Outgoing packets from the message queue interface of bfdmux will be immediately
re-injected.

Definition in file msgq_loopback.c.

bfdmux

142 File Documentation

16.20 libbfdmux/bfdmuxsniff/bfdmuxinject/src/bfdmuxinject.c
File Reference

Inject real network packets from your ’to-the-world-connected’ NIC into bfdmux.

Include dependency graph for bfdmuxinject.c:

libbfdmux/bfdmuxsniff/bfdmuxinject/src/bfdmuxinject.c

netif/mqif.h

netif.h

bfdmux.h

debug.h

Functions

• void quit (int signum)

Exit handler.

• void psend2bfdmux (u_char ∗data, size_t len)

Forward packet to bfdmux.

• void pprint (u_char ∗data, size_t len)

Print packet to console.

• int main (int argc, char ∗∗argv)

Main function with endless loop for packet capturing.

16.20.1 Detailed Description

Inject real network packets from your ’to-the-world-connected’ NIC into bfdmux.

This tool captures all packets on a given interface and forwards them to your bfdmux
instance. Capturing is done using the pcap library.

Definition in file bfdmuxinject.c.

Barrelfish Demultiplexer

16.20 libbfdmux/bfdmuxsniff/bfdmuxinject/src/bfdmuxinject.c File Reference143

16.20.2 Function Documentation

16.20.2.1 int main (int argc, char ∗∗ argv)

Main function with endless loop for packet capturing.

This function initializes a signal handler to exit the program, the message queue to
communicate with bfdmux and pcap to capture packets. Packet capturing is done in an
endless loop. To quit press CTRL+C.

Definition at line 103 of file bfdmuxinject.c.

Here is the call graph for this function:

main

pprint

psend2bfdmux

quit

close_nic_interface

close_server rwlock_destroy

destroy_app_register

rwlock_acquire

rwlock_release

16.20.2.2 void pprint (u_char ∗ data, size_t len)

Print packet to console.

Parameters:

data Pointer to data segment

len Data length

Definition at line 83 of file bfdmuxinject.c.

Here is the caller graph for this function:

pprint main

16.20.2.3 void psend2bfdmux (u_char ∗ data, size_t len)

Forward packet to bfdmux.

Parameters:

data Pointer to data segment

len Data length

bfdmux

144 File Documentation

Definition at line 50 of file bfdmuxinject.c.

Here is the call graph for this function:

psend2bfdmux quit

close_nic_interface

close_server rwlock_destroy

destroy_app_register

rwlock_acquire

rwlock_release

Here is the caller graph for this function:

psend2bfdmux main

Barrelfish Demultiplexer

16.21 libbfdmux/bfdmuxsniff/src/bfdmuxsniff.c File Reference 145

16.21 libbfdmux/bfdmuxsniff/src/bfdmuxsniff.c File
Reference

A sniffer written for bfdmux.

Include dependency graph for bfdmuxsniff.c:

libbfdmux/bfdmuxsniff/src/bfdmuxsniff.c

libbfdmux.h

bfdmux.h

bfdmux_ciprot.h tools.h

debug.h

Functions

• void printicmpinfo (uint8_t ∗msg, size_t len)
This function extracts metadata from an ICMP packet.

• void printtcpinfo (uint8_t ∗msg, size_t len)
This function extracts metadata from an TCP packet.

• void printudpinfo (uint8_t ∗msg, size_t len)
This function extracts metadata from an UDP packet.

• void printipv4info (uint8_t ∗msg, size_t len)
This function extracts metadata from an IPv4 packet.

• void new_msg (void ∗msg, size_t len, filterid_t id)
This handler gets called when the application received a new packet.

• void get_new_filter (int signum)
This signal handler gets called when you want to enter a new filter.

• void quit (int signum)
This signal handler gets called when you want to quit the sniffer.

• int main (int argc, char ∗∗argv)
The main function sets up the signal handler, registers itself at bfdmux and waits in
an endless loop for your interaction.

bfdmux

146 File Documentation

16.21.1 Detailed Description

A sniffer written for bfdmux.

With this sniffer you have access to all packets coming in into bfdmux. Additionally
you can specify a personal filter (by hitten CTRL+\). The output fill be metadata of
the fetched packets.

Currently bfdmuxsniff supports tcp, udp, icmp

Definition in file bfdmuxsniff.c.

16.21.2 Function Documentation

16.21.2.1 void new_msg (void ∗ msg, size_t len, filterid_t id)

This handler gets called when the application received a new packet.

Parameters:

msg Pointer to packet data
len Packet length
id Filter ID that matched this packet

Definition at line 200 of file bfdmuxsniff.c.

Here is the call graph for this function:

new_msg printipv4info

printicmpinfo

printtcpinfo

printudpinfo

16.21.2.2 void printicmpinfo (uint8_t ∗ msg, size_t len)

This function extracts metadata from an ICMP packet.

Parameters:

msg Pointer to ICMP packet
len Packet length

Definition at line 43 of file bfdmuxsniff.c.

Here is the caller graph for this function:

printicmpinfo printipv4info new_msg

Barrelfish Demultiplexer

16.21 libbfdmux/bfdmuxsniff/src/bfdmuxsniff.c File Reference 147

16.21.2.3 void printipv4info (uint8_t ∗ msg, size_t len)

This function extracts metadata from an IPv4 packet.

Parameters:

msg Pointer to ICMP packet

len Packet length

Definition at line 133 of file bfdmuxsniff.c.

Here is the call graph for this function:

printipv4info

printicmpinfo

printtcpinfo

printudpinfo

Here is the caller graph for this function:

printipv4info new_msg

16.21.2.4 void printtcpinfo (uint8_t ∗ msg, size_t len)

This function extracts metadata from an TCP packet.

Parameters:

msg Pointer to ICMP packet

len Packet length

Definition at line 90 of file bfdmuxsniff.c.

Here is the caller graph for this function:

printtcpinfo printipv4info new_msg

16.21.2.5 void printudpinfo (uint8_t ∗ msg, size_t len)

This function extracts metadata from an UDP packet.

bfdmux

148 File Documentation

Parameters:

msg Pointer to ICMP packet

len Packet length

Definition at line 116 of file bfdmuxsniff.c.

Here is the caller graph for this function:

printudpinfo printipv4info new_msg

Barrelfish Demultiplexer

16.22 libbfdmux/src/bfdmux_ciprot.c File Reference 149

16.22 libbfdmux/src/bfdmux_ciprot.c File Reference

Bfdmux client protocol interface implementation.

Include dependency graph for bfdmux_ciprot.c:

libbfdmux/src/bfdmux_ciprot.c

bfdmux_ciprot.h

bfdmux.h

debug.h

Functions

• cmd_t cmd_get (void ∗data)
Get command type.

• size_t cmd_get_size (cmd_t cmd)
Get command size.

• err_t cmd_check (cmd_t cmd, void ∗data, size_t len)
Check if command is valid.

16.22.1 Detailed Description

Bfdmux client protocol interface implementation.

Helper functions for client command handling

Definition in file bfdmux_ciprot.c.

16.22.2 Function Documentation

16.22.2.1 err_t cmd_check (cmd_t cmd, void ∗ data, size_t len)

Check if command is valid.

Verifies validity of a command packet using the command type and its size as refer-
ence.

Note:

Not very nice implementation

bfdmux

150 File Documentation

Parameters:

cmd Command type to check against

data Pointer to command packet data

len Length of the packet

Returns:

If the command packet at ’data’ is of type ’cmd’ and has length ’len’, this function
returns CMD_OK. CMD_ERR if this is not the case.

Definition at line 96 of file bfdmux_ciprot.c.

Here is the caller graph for this function:

cmd_check attach

bfdmux_send

detach

register_app

unregister_app

get_new_filter

main

main

quit

16.22.2.2 cmd_t cmd_get (void ∗ data)

Get command type.

Extracts the command type to a given data string.

Parameters:

data A pointer to a data string containing a command packet.

Returns:

The command type upon success or CMD_ERR if the packet was not recognized.

Definition at line 23 of file bfdmux_ciprot.c.

Here is the caller graph for this function:

cmd_get new_message_event run main

16.22.2.3 size_t cmd_get_size (cmd_t cmd)

Get command size.

Barrelfish Demultiplexer

16.22 libbfdmux/src/bfdmux_ciprot.c File Reference 151

Parameters:

cmd Command type

Returns:

Size of an accurate command packet of type ’cmd’

Definition at line 53 of file bfdmux_ciprot.c.

Here is the caller graph for this function:

cmd_get_size new_message_event run main

bfdmux

152 File Documentation

16.23 libbfdmux/src/include/bfdmux.h File Reference

Bfdmux twek options.

Include dependency graph for bfdmux.h:

libbfdmux/src/include/bfdmux.h

debug.h

Defines

• #define PROC_QUEUE_LEN 5

Number of NIC buffers to queue for processing.

• #define BFDMUX_SOCK_PATH "/tmp/.bfdmux.sock"

Location of the UNIX socket file.

• #define FLUSH_AND_SYNC 1

Always call fflush and sync on file descriptor and communication channels.

• #define ERR_OK 0

No error.

• #define ERR_NONFATAL -1

Error, but nonfatal.

• #define ERR_FATAL -2

Fatal error, shut down.

• #define ERR_DISCONNECT -3

Disconnect error. Client-server connection is lost.

• #define ERR_DROPPED -4

Application was not able to receive a new packet. So the packet was dropped.

• #define PROTO_TCP 0x06

TCP protocol number in IPv4 header.

• #define PROTO_UDP 0x11a

UDP protocol number in IPv4 header.

• #define PORT_ANY 0x00

Any UDP/TCP port.

Barrelfish Demultiplexer

16.23 libbfdmux/src/include/bfdmux.h File Reference 153

• #define IP_ADDR_ANY 0x00
Any IPv4-Address.

• #define IP_ADDR_LOCAL 0x7f000001
This is the localhost 127.0.0.1 IP-Address.

Typedefs

• typedef uint8_t prot_t
Protocol type.

• typedef uint32_t addr_t
IP-Address type.

• typedef uint16_t port_t
Port type.

• typedef int8_t err_t
Error type.

• typedef int32_t sock_t
Socket type.

• typedef int32_t mq_t
Message queue type.

• typedef uint8_t cmd_t
Command type.

• typedef uint32_t mqkey_t
Message queue key type.

• typedef uint32_t smkey_t
Shared memory key type.

• typedef int32_t filterid_t
Filter id type. Negative values for errors.

Functions

• bool demux (void ∗data, int len)
Tries to demux the given packet and forward it to the application.

bfdmux

154 File Documentation

16.23.1 Detailed Description

Bfdmux twek options.

Definition in file bfdmux.h.

16.23.2 Function Documentation

16.23.2.1 bool demux (void ∗ data, int len)

Tries to demux the given packet and forward it to the application.

Parameters:

data Points to the packet in memory

len Length of the packet data in bytes

Returns:

true if the packet could be put into the demuxer’s queue; otherwise false.

Definition at line 133 of file bfdmux.c.

Here is the call graph for this function:

demux

check_demuxer_idle_and_lock

rwlock_release

rwlock_acquire

Here is the caller graph for this function:

demux signal_handler init_nic_interface main

Barrelfish Demultiplexer

16.24 libbfdmux/src/include/bfdmux_ciprot.h File Reference 155

16.24 libbfdmux/src/include/bfdmux_ciprot.h File Ref-
erence

Bfdmux command interface protocol header file Declaration of the available command
packets and the corresponding command types.

Include dependency graph for bfdmux_ciprot.h:

libbfdmux/src/include/bfdmux_ciprot.h

bfdmux.h

debug.h

Data Structures

• struct cmd_register
Register command.

• struct cmd_register_answer
Answer command to the register command.

• struct cmd_unregister
Unregister command.

• struct cmd_unregister_answer
Answer command to the unregister command.

• struct cmd_attach
Attach command Attach a filter to the application.

• struct cmd_attach_answer
Answer command to the attach command.

• struct cmd_detach
Detach command.

• struct cmd_detach_answer
Answer command to the detach command.

• struct cmd_send
Send command.

• struct cmd_send_answer

bfdmux

156 File Documentation

Answer command to the send command.

• struct cmd_recv

Receive command.

• struct cmd_recv_answer

Answer command to the receive command.

• struct cmd_error

Error command.

Defines

• #define CMD_ERROR 0xFF

Error command.

• #define CMD_REGISTER 0xC0

ID of the register command.

• #define CMD_UNREGISTER 0xC1

ID of the unregister command.

• #define CMD_ATTACH 0xC2

ID of the command to attach the application to a filter.

• #define CMD_DETACH 0xC3

ID of the command to detach the application from a filter.

• #define CMD_SEND 0xC4

ID of the command to send data out to the world.

• #define CMD_GET_IP_LIST 0xC6

ID of the command to ask bfdmux for available IP-Addresses.

• #define CMD_RECV_ANSWER 0xA5

ID of command to notice bfdmux that the application finished processing a data
packet.

• #define CMD_REGISTER_ANSWER 0xA0

ID of answer to the register command.

• #define CMD_UNREGISTER_ANSWER 0xA1

ID of answer to the unregister command.

• #define CMD_ATTACH_ANSWER 0xA2

Barrelfish Demultiplexer

16.24 libbfdmux/src/include/bfdmux_ciprot.h File Reference 157

ID of answer to the attach command.

• #define CMD_DETACH_ANSWER 0xA3
ID of answer to the detach command.

• #define CMD_SEND_ANSWER 0xA4
ID of answer to the send command.

• #define CMD_GET_IP_LIST_ANSWER 0xA6
ID of answer to the get IP-Address list command.

• #define CMD_RECV 0xC5
• #define CMD_OK 0

Command is OK.

• #define CMD_ERR 0xff
Error.

Functions

• cmd_t cmd_get (void ∗data)
Get command type.

• size_t cmd_get_size (cmd_t cmd)
Get command size.

• err_t cmd_check (cmd_t cmd, void ∗data, size_t len)
Check if command is valid.

16.24.1 Detailed Description

Bfdmux command interface protocol header file Declaration of the available command
packets and the corresponding command types.

Definition in file bfdmux_ciprot.h.

16.24.2 Define Documentation

16.24.2.1 #define CMD_GET_IP_LIST 0xC6

ID of the command to ask bfdmux for available IP-Addresses.

Warning:

Not implemented

bfdmux

158 File Documentation

Definition at line 24 of file bfdmux_ciprot.h.

16.24.2.2 #define CMD_GET_IP_LIST_ANSWER 0xA6

ID of answer to the get IP-Address list command.

Warning:

Not implemented

Definition at line 36 of file bfdmux_ciprot.h.

16.24.2.3 #define CMD_RECV 0xC5

ID of the command to notice the application that a new packet arrived

Definition at line 40 of file bfdmux_ciprot.h.

16.24.3 Function Documentation

16.24.3.1 err_t cmd_check (cmd_t cmd, void ∗ data, size_t len)

Check if command is valid.

Verifies validity of a command packet using the command type and its size as refer-
ence.

Note:

Not very nice implementation

Parameters:

cmd Command type to check against

data Pointer to command packet data

len Length of the packet

Returns:

If the command packet at ’data’ is of type ’cmd’ and has length ’len’, this function
returns CMD_OK. CMD_ERR if this is not the case.

Definition at line 96 of file bfdmux_ciprot.c.

Barrelfish Demultiplexer

16.24 libbfdmux/src/include/bfdmux_ciprot.h File Reference 159

Here is the caller graph for this function:

cmd_check attach

bfdmux_send

detach

register_app

unregister_app

get_new_filter

main

main

quit

16.24.3.2 cmd_t cmd_get (void ∗ data)

Get command type.

Extracts the command type to a given data string.

Parameters:

data A pointer to a data string containing a command packet.

Returns:

The command type upon success or CMD_ERR if the packet was not recognized.

Definition at line 23 of file bfdmux_ciprot.c.

Here is the caller graph for this function:

cmd_get new_message_event run main

16.24.3.3 size_t cmd_get_size (cmd_t cmd)

Get command size.

Parameters:

cmd Command type

Returns:

Size of an accurate command packet of type ’cmd’

Definition at line 53 of file bfdmux_ciprot.c.

bfdmux

160 File Documentation

Here is the caller graph for this function:

cmd_get_size new_message_event run main

Barrelfish Demultiplexer

16.25 libbfdmux/src/include/debug.h File Reference 161

16.25 libbfdmux/src/include/debug.h File Reference

Debug makro definitions.

Defines

• #define DEBUG_LEVEL 2
Debug level.

• #define PDEBUG_FNAME(x) char∗ __DEBUG__CURRENT_FUNCTION_-
NAME = x; int __DEBUG__OMIT = 0; if (__DEBUG__OMIT) {};

Set the current function name for well-arranged debug messages.

• #define PDEBUG_OMIT __DEBUG__OMIT = 1;
When calling this makro, all debug messages for the caller function will be omitted.

• #define PDEBUG_HEADER(x)
This prints a debug header e.g: libbfdmux.c:regster_app: ∗∗∗ Hello world debug
message ∗∗∗.

• #define PDEBUG_FOOTER(x)
This prints a debug footer line e.g: libbfdmux.c:regiser_app ### Foo bar footer ###.

• #define PDEBUG_ERROR(x)
This makro is used to print error messages.

• #define PDEBUG_INFO(x)
This makro is used to print additional information.

• #define PDEBUG_RAW(arr, cnt)
This makro is used to dump a memory segment to the screen as hex and.

16.25.1 Detailed Description

Debug makro definitions.

Definition in file debug.h.

16.25.2 Define Documentation

16.25.2.1 #define DEBUG_LEVEL 2

Debug level.

• 0: No messages will be printed on stdout.

bfdmux

162 File Documentation

• 1: Only error messages will be printed.

• 2: Error and information messages will be printed.

• 3: Information, errors and packet data as ascii will be printed.

• 4: Information, errors and packet data as ascii and hex will be printed.

Definition at line 20 of file debug.h.

16.25.2.2 #define PDEBUG_RAW(arr, cnt)

Value:

if ((DEBUG_LEVEL >= 4) && (!__DEBUG__OMIT)) { \
int __debug_i; __debug_i = 0; \
char __debug_c; __debug_c = ’ ’; \
printf(" %s: ", __DEBUG__CURRENT_FUNCTION_NAME); \
printf("Address: %p, size: %u Bytes\n", arr, (unsigned) (cnt)); \
printf(" %s: ", __DEBUG__CURRENT_FUNCTION_NAME); \
for(__debug_i = 0; __debug_i < (cnt); __debug_i++) { \

printf("%02x ",*((uint8_t*) (arr) + __debug_i)); \
if (!((__debug_i+1)%20)) printf("\n %s: ", __DEBUG__CURRENT_FUNCTION_NAME); \

}; \
}; \
if ((DEBUG_LEVEL >= 3) && (!__DEBUG__OMIT)) { \

int __debug_j; __debug_j = 0; \
char __debug_d; __debug_d = ’ ’; \
printf("\n %s: ", __DEBUG__CURRENT_FUNCTION_NAME); \
for(__debug_j = 0; __debug_j < (cnt); __debug_j++) { \

__debug_d = *((uint8_t*) (arr) + __debug_j); \
if (__debug_d < 0x20 || __debug_d > 0x7e) __debug_d = ’*’; \
printf("%c",__debug_d); \
if (!((__debug_j+1)%60)) printf("\n %s: ", __DEBUG__CURRENT_FUNCTION_NAME); \

}; \
printf("\n"); \
if (FLUSH_AND_SYNC) { \

fflush(stdin); \
} \

};

This makro is used to dump a memory segment to the screen as hex and.

(if the debug level allows it) as characters.

Definition at line 102 of file debug.h.

Barrelfish Demultiplexer

16.26 libbfdmux/src/include/libbfdmux.h File Reference 163

16.26 libbfdmux/src/include/libbfdmux.h File Refer-
ence

Libbfdmux API.

Include dependency graph for libbfdmux.h:

libbfdmux/src/include/libbfdmux.h

bfdmux.h

bfdmux_ciprot.h tools.h

debug.h

Defines

• #define OK 0
No error.

• #define ERR -1
Error.

Functions

• err_t register_app (void(∗recv_callback)(void ∗, size_t, filterid_t), void ∗∗sm_-
inpt, void ∗∗sm_outpt, size_t size_in, size_t size_out)

Register application at bfdmux.

• err_t unregister_app (void)
Deregister application from bfdmux.

• filterid_t attach (char ∗filter)
Attach application to a filter.

• err_t detach (filterid_t filter_id)
Detach application from a previous attached filter with ID ’filter_id’.

• size_t bfdmux_send (size_t len)
Send data out.

• void bfdmux_set_recv_callback (void(∗callback)(void ∗, size_t, filterid_t))

bfdmux

164 File Documentation

Set callback function for the receive packet event.

16.26.1 Detailed Description

Libbfdmux API.

Bfdmux interface (libbfdmux) for applications that want to use bfdmux.

Definition in file libbfdmux.h.

16.26.2 Function Documentation

16.26.2.1 filterid_t attach (char ∗ filter)

Attach application to a filter.

Sends filter string ’filter’ to bfdmux and attaches it.

Parameters:

filter Pointer to the filter string

Returns:

Filter ID on success, -1 otherwise

Definition at line 326 of file libbfdmux.c.

Here is the call graph for this function:

attach

bfdmux_ci_send

cmd_check

recv_answer

Here is the caller graph for this function:

attach

get_new_filter

main

main

16.26.2.2 size_t bfdmux_send (size_t len)

Send data out.

Barrelfish Demultiplexer

16.26 libbfdmux/src/include/libbfdmux.h File Reference 165

Send ’len’ bytes of data starting at the ’shmaddr_out’ address out. The outbound buffer
should be filled before calling this function.

Parameters:

len Amount of bytes to send

Returns:

Number of bytes actually sent

Definition at line 436 of file libbfdmux.c.

Here is the call graph for this function:

bfdmux_send

bfdmux_ci_send

cmd_check

recv_answer

Here is the caller graph for this function:

bfdmux_send main

16.26.2.3 void bfdmux_set_recv_callback (void(∗)(void ∗, size_t, filterid_t)
callback)

Set callback function for the receive packet event.

Parameters:

callback Function pointer to a receive-data handler

Definition at line 537 of file libbfdmux.c.

Here is the caller graph for this function:

bfdmux_set_recv_callback register_app main

16.26.2.4 err_t detach (filterid_t filter_id)

Detach application from a previous attached filter with ID ’filter_id’.

bfdmux

166 File Documentation

Parameters:

filter_id Filter ID of a previous attached filter

Returns:

OK on success, ERR otherwise.

Definition at line 384 of file libbfdmux.c.

Here is the call graph for this function:

detach

bfdmux_ci_send

cmd_check

recv_answer

Here is the caller graph for this function:

detach

get_new_filter

quit

main

16.26.2.5 err_t register_app (void(∗)(void ∗, size_t, filterid_t) recv_callback,
void ∗∗ sm_inpt, void ∗∗ sm_outpt, size_t size_in, size_t size_out)

Register application at bfdmux.

Starts thread to handle incoming commands, sets up shared memory of specified size,
connects to and registers with bfdmux via Unix socket

Parameters:

recv_callback pointer to callback function for handling incoming data

→ sm_inpt pointer to a pointer to the incoming packet buffer (will be set on suc-
cess)

→ sm_outpt pointer to a pointer to the outgoing packet buffer (will be set on suc-
cess)

size_in desired size of inbound buffer

size_out desired size of outbound buffer

Returns:

OK on success, otherwise ERR.

Barrelfish Demultiplexer

16.26 libbfdmux/src/include/libbfdmux.h File Reference 167

Definition at line 105 of file libbfdmux.c.

Here is the call graph for this function:

register_app

bfdmux_ci_send

bfdmux_set_recv_callback

cmd_check

recv_answer

server_thread_start

Here is the caller graph for this function:

register_app main

16.26.2.6 err_t unregister_app (void)

Deregister application from bfdmux.

Deregisters from bfdmux, detaches shared memory and then closes command socket

Returns:

Returns OK if successful, otherwise ERR

Definition at line 252 of file libbfdmux.c.

Here is the call graph for this function:

unregister_app

bfdmux_ci_send

cmd_check

recv_answer

Here is the caller graph for this function:

unregister_app quit

bfdmux

168 File Documentation

16.27 libbfdmux/src/include/rwlock.h File Reference

Read/write lock header file.

Defines

• #define MAX_READ_LOCKS 100
Maximum number of simultaneous read-only locks on an object.

Functions

• int rwlock_create (void)
Create a read/write lock handle.

• bool rwlock_destroy (int sid)
Destroy a previous created read/write lock.

• bool rwlock_acquire (int sid, bool write)
Acquire rights (read-write or read-only) on an existing lock.

• bool rwlock_elevate (int sid)
Elevate a read-only lock to a read-write lock.

• bool rwlock_try_acquire (int sid, bool write)
Try to acquire rights (read-write or read-only) on an existing lock.

• bool rwlock_release (int sid, bool write)
Release a previous acquired right on a read/write lock.

• bool rwlock_lower (int sid)
Lower the permission on a read/write lock.

16.27.1 Detailed Description

Read/write lock header file.

Definition in file rwlock.h.

16.27.2 Function Documentation

16.27.2.1 bool rwlock_acquire (int sid, bool write)

Acquire rights (read-write or read-only) on an existing lock.

Barrelfish Demultiplexer

16.27 libbfdmux/src/include/rwlock.h File Reference 169

Acquire a read-write or a read-only right on a previous created read/write lock. This
function call is blocking and will return only after successfully acquiring the asked
right or on error.

Parameters:

sid Read/write lock id

write Boolean argument to choose between a read-write lock (true) or a read-only
lock (false)

Returns:

True on success, false otherwise.

Definition at line 79 of file rwlock.c.

Here is the caller graph for this function:

rwlock_acquire

check_demuxer_idle_and_lock

mainclose_server

new_packet_event

run

wait_for_new_packet_and_lock

demux signal_handler init_nic_interface

quit psend2bfdmux main

16.27.2.2 int rwlock_create (void)

Create a read/write lock handle.

Returns:

Read/write lock handle on success, -1 otherwise.

Definition at line 26 of file rwlock.c.

Here is the caller graph for this function:

rwlock_create

init_app_register

main

initialize_server

bfdmux

170 File Documentation

16.27.2.3 bool rwlock_destroy (int sid)

Destroy a previous created read/write lock.

Parameters:

sid Previous created read/write lock that should get destroyed

Returns:

True on success, false otherwise.

Definition at line 61 of file rwlock.c.

Here is the caller graph for this function:

rwlock_destroy

destroy_app_register

quit

close_server main

psend2bfdmux

16.27.2.4 bool rwlock_elevate (int sid)

Elevate a read-only lock to a read-write lock.

Elevate the right on lock from read-only to read-write. This function is blocking and
will return only after successfully elevating the read/write lock or after an error.

Parameters:

sid Read/write lock ID to elevate the rights on

Returns:

True on success, false otherwise.

Definition at line 126 of file rwlock.c.

Here is the caller graph for this function:

rwlock_elevate

new_client_event

run

new_message_event

main

16.27.2.5 bool rwlock_lower (int sid)

Lower the permission on a read/write lock.

Barrelfish Demultiplexer

16.27 libbfdmux/src/include/rwlock.h File Reference 171

This function lowers the permission on a read/write lock from read-write to read-only.
To completely remove the read/write lock use rwlock_release().

Parameters:

sid Read/write lock id

Returns:

True on success, false otherwise.

Definition at line 251 of file rwlock.c.

Here is the caller graph for this function:

rwlock_lower

new_client_event

run

new_message_event

main

16.27.2.6 bool rwlock_release (int sid, bool write)

Release a previous acquired right on a read/write lock.

Release a read/write lock. To lower the right from read-write to read-only don’t use
this function, use rwlock_lower(). This function completely releases the read/write
lock.

Parameters:

sid Read/write lock id

write Boolean argument specifying if this read/write lock has read-write (true) or
read-only (false) permissions.

Returns:

True on success, false otherwise.

Definition at line 209 of file rwlock.c.

bfdmux

172 File Documentation

Here is the caller graph for this function:

rwlock_release

check_demuxer_idle_and_lock

demux

main

close_server

new_packet_event

run

wait_for_new_packet_and_lock

signal_handler init_nic_interface

quit

psend2bfdmux main

16.27.2.7 bool rwlock_try_acquire (int sid, bool write)

Try to acquire rights (read-write or read-only) on an existing lock.

Acquire a read-write or a read-only right on a previous created read/write lock. This
function call is non-blocking and will return immediately.

Parameters:

sid Read/write lock id

write Boolean argument to choose between a read-write lock (true) or a read-only
lock (false)

Returns:

True on success, false otherwise.

Definition at line 167 of file rwlock.c.

Barrelfish Demultiplexer

16.28 libbfdmux/src/include/tools.h File Reference 173

16.28 libbfdmux/src/include/tools.h File Reference

Header file for helper and additional functions.

Include dependency graph for tools.h:

libbfdmux/src/include/tools.h

bfdmux.h

debug.h

Functions

• int find_msb (uint64_t value)

Finds the index of the most significant 1-bit in ’value’.

• uint8_t ∗ parse_hex_input (char ∗str)

Parses a string consisting of hex digits to a byte array.

• char ∗ get_error_position_string (int pos)

Returns a string with pos-1 spaces and a ’∧’ character. Used to indicate error position
in filter string!

• char ∗ build_ipv4_filter (addr_t srcip, addr_t dstip)

IPv4 filter template.

• char ∗ build_tcp_filter (port_t srcport, port_t dstport)

TCP filter template.

• char ∗ build_udp_filter (port_t srcport, port_t dstport)

UDP filter template.

• char ∗ build_ipv4_tcp_filter (addr_t srcip, addr_t dstip, port_t srcport, port_-
t dstport)

TCP over IPv4 filter template.

• char ∗ build_ipv4_udp_filter (addr_t srcip, addr_t dstip, port_t srcport, port_t
dstport)

UDP over IPv4 filter template.

bfdmux

174 File Documentation

16.28.1 Detailed Description

Header file for helper and additional functions.

Definition in file tools.h.

16.28.2 Function Documentation

16.28.2.1 char∗ build_ipv4_filter (addr_t srcip, addr_t dstip)

IPv4 filter template.

Create an IPv4 filter based on a source IP and a destination IP. The source IP is a 32bit
field in the IPv4 header starting at offset 12Bytes, the destination IP is also a 32bit field
starting at 16Bytes.

Parameters:

srcip Filter packets coming from this source IP (IP_ADDR_ANY for any source)

dstip Filter packets going to this destination IP (IP_ADDR_ANY for any target)

Returns:

A filter string. Caller has to free it after use.

Definition at line 154 of file tools.c.

Here is the caller graph for this function:

build_ipv4_filter

build_ipv4_tcp_filter

build_ipv4_udp_filter

16.28.2.2 char∗ build_ipv4_tcp_filter (addr_t srcip, addr_t dstip, port_t
srcport, port_t dstport)

TCP over IPv4 filter template.

This function build a TCP over IPv4 filter based on the given arguments using the
build_tcp_filter and build_ipv4_filter helper functions.

Parameters:

srcip Source IP-Address to filter for (IP_ADDR_ANY for any)

dstip Destination IP-Address to filter for (IP_ADDR_ANY for any)

srcport Source TCP port to filter for (PORT_ANY for any)

dstport Destination TCP port to filter for (PORT_ANY for any)

Barrelfish Demultiplexer

16.28 libbfdmux/src/include/tools.h File Reference 175

Returns:

A filter string. Caller has to free it after use.

Definition at line 255 of file tools.c.

Here is the call graph for this function:

build_ipv4_tcp_filter

build_ipv4_filter

build_tcp_filter

16.28.2.3 char∗ build_ipv4_udp_filter (addr_t srcip, addr_t dstip, port_t
srcport, port_t dstport)

UDP over IPv4 filter template.

This function build a UDP over IPv4 filter based on the given arguments using the
build_tcp_filter and build_ipv4_filter helper functions.

Parameters:

srcip Source IP-Address to filter for (IP_ADDR_ANY for any)

dstip Destination IP-Address to filter for (IP_ADDR_ANY for any)

srcport Source UDP port to filter for (PORT_ANY for any)

dstport Destination UDP port to filter for (PORT_ANY for any)

Returns:

A filter string. Caller has to free it after use.

Definition at line 286 of file tools.c.

Here is the call graph for this function:

build_ipv4_udp_filter

build_ipv4_filter

build_udp_filter

16.28.2.4 char∗ build_tcp_filter (port_t srcport, port_t dstport)

TCP filter template.

Create a TCP filter based on the source and destination TCP Port. This filter looks for
the TCP protocol number (0x06) in the IP header and sets the 16bit long source port
field positioned at offset 20Bytes (with IP header) and the 16bit long destination port
filed positioned at offset 22Bytes to the given arguments.

bfdmux

176 File Documentation

Parameters:

srcport TCP source port to filter on (PORT_ANY for any port)

dstport TCP destination port to filter on (PORT_ANY for any port)

Returns:

A filter sting. Caller has to free it after use.

Definition at line 192 of file tools.c.

Here is the caller graph for this function:

build_tcp_filter build_ipv4_tcp_filter

16.28.2.5 char∗ build_udp_filter (port_t srcport, port_t dstport)

UDP filter template.

Create a UDP filter based on the source and destination UDP Port. This filter looks for
the UDP protocol number (0x11) in the IP header and sets the 16bit long source port
field positioned at offset 20Bytes (with IP header) and the 16bit long destination port
filed positioned at offset 22Bytes to the given arguments.

Parameters:

srcport UDP source port to filter on (PORT_ANY for any port)

dstport UDP destination port to filter on (PORT_ANY for any port)

Returns:

A filter sting. Caller has to free it after use.

Definition at line 226 of file tools.c.

Here is the caller graph for this function:

build_udp_filter build_ipv4_udp_filter

16.28.2.6 int find_msb (uint64_t value) [inline]

Finds the index of the most significant 1-bit in ’value’.

Parameters:

value The integer to be analyzed

Barrelfish Demultiplexer

16.28 libbfdmux/src/include/tools.h File Reference 177

Returns:

The index of the most significant 1-bit in value (bits numbered 1..64); 0 if value =
0.

Definition at line 23 of file tools.c.

Here is the caller graph for this function:

find_msb compile_subtree compile_filter new_message_event run

16.28.2.7 char∗ get_error_position_string (int pos)

Returns a string with pos-1 spaces and a ’∧’ character. Used to indicate error position
in filter string!

Parameters:

pos The position to point at

Returns:

A string with a ’∧’ character at the given position. Caller should free memory after
use!

Definition at line 88 of file tools.c.

Here is the caller graph for this function:

get_error_position_string new_message_event run main

16.28.2.8 uint8_t∗ parse_hex_input (char ∗ str)

Parses a string consisting of hex digits to a byte array.

Parameters:

str The string to be parsed, e.g. "fe01abc9"

Returns:

A byte array, e.g. 0xfe 0x01 0xab 0xc9. Caller should free the array after use!

Definition at line 107 of file tools.c.

bfdmux

178 File Documentation

16.29 libbfdmux/src/libbfdmux.c File Reference

Interface for applications that want to use bfdmux.

Include dependency graph for libbfdmux.c:

libbfdmux/src/libbfdmux.c

libbfdmux.h

bfdmux.h

bfdmux_ciprot.h tools.h

debug.h

Defines

• #define CMD_BUFF_SIZE 1024

Command interface buffer size.

• #define MQ_FLAG 0666

Message queue permissions.

Functions

• int bfdmux_ci_send (void ∗data, size_t len)

Send a command to bfdmux on the command interface.

• void ∗ server_thread (void ∗ptr)

Server thread function.

• void server_thread_start ()

Helper function to start the server thread.

• int recv_answer (void ∗∗buffpt)

Busy wait to wait for the answer of a sent command.

• err_t register_app (void(∗recv_callback)(void ∗, size_t, filterid_t), void ∗∗sm_-
inpt, void ∗∗sm_outpt, size_t size_in, size_t size_out)

Register application at bfdmux.

Barrelfish Demultiplexer

16.29 libbfdmux/src/libbfdmux.c File Reference 179

• err_t unregister_app (void)
Deregister application from bfdmux.

• filterid_t attach (char ∗filter)
Attach application to a filter.

• err_t detach (filterid_t filter_id)
Detach application from a previous attached filter with ID ’filter_id’.

• size_t bfdmux_send (size_t len)
Send data out.

• int bfdmux_ci_recv (void ∗data, size_t len)
Receive a command from bfdmux on the command interface.

• void bfdmux_set_recv_callback (void(∗callback)(void ∗, size_t, filterid_t))
Set callback function for the receive packet event.

Variables

• sock_t sock
UNIX socket (Command interface).

• mq_t mqid
Message queue (Data interface).

• void ∗ shmaddr_in = NULL
Address of inbound (world to application) buffer.

• void ∗ shmaddr_out = NULL
Address of output (application to world) buffer.

• int smid_in
Shared memory ID of the inbound buffer.

• int smid_out
Shared memory ID of the outbound buffer.

• pthread_t server_thread_descriptor
Server thread descriptor.

• void(∗ recv_event)(void ∗, size_t, filterid_t)
Application callback function that gets called upon incoming data.

bfdmux

180 File Documentation

• void ∗ request_answer

Pointer to the answer command.

• size_t request_answer_size

Size of the answer command.

16.29.1 Detailed Description

Interface for applications that want to use bfdmux.

This is the main file of the libbfdmux implementation. This object (and others) can be
used by an application to interact with bfdmux.

Definition in file libbfdmux.c.

16.29.2 Define Documentation

16.29.2.1 #define MQ_FLAG 0666

Message queue permissions.

Todo

Verify and change if possible.

Definition at line 47 of file libbfdmux.c.

16.29.3 Function Documentation

16.29.3.1 filterid_t attach (char ∗ filter)

Attach application to a filter.

Sends filter string ’filter’ to bfdmux and attaches it.

Parameters:

filter Pointer to the filter string

Returns:

Filter ID on success, -1 otherwise

Definition at line 326 of file libbfdmux.c.

Barrelfish Demultiplexer

16.29 libbfdmux/src/libbfdmux.c File Reference 181

Here is the call graph for this function:

attach

bfdmux_ci_send

cmd_check

recv_answer

Here is the caller graph for this function:

attach

get_new_filter

main

main

16.29.3.2 int bfdmux_ci_recv (void ∗ data, size_t len)

Receive a command from bfdmux on the command interface.

Blocking wait for an incoming command on the command interface. ’len’ or less com-
mand bytes will be written to ’data’.

Parameters:

→ data Pointer to a pre allocated buffer to write the command in

len Size of the the buffer

Returns:

Number of bytes written into ’data’

Definition at line 517 of file libbfdmux.c.

16.29.3.3 int bfdmux_ci_send (void ∗ data, size_t len)

Send a command to bfdmux on the command interface.

Parameters:

data Pointer to the command

len Size of the command

Returns:

Number of bytes sent

bfdmux

182 File Documentation

Definition at line 491 of file libbfdmux.c.

Here is the caller graph for this function:

bfdmux_ci_send attach

bfdmux_send

detach

register_app

unregister_app

get_new_filter

main

main

quit

16.29.3.4 size_t bfdmux_send (size_t len)

Send data out.

Send ’len’ bytes of data starting at the ’shmaddr_out’ address out. The outbound buffer
should be filled before calling this function.

Parameters:

len Amount of bytes to send

Returns:

Number of bytes actually sent

Definition at line 436 of file libbfdmux.c.

Here is the call graph for this function:

bfdmux_send

bfdmux_ci_send

cmd_check

recv_answer

Here is the caller graph for this function:

bfdmux_send main

16.29.3.5 void bfdmux_set_recv_callback (void(∗)(void ∗, size_t, filterid_t)
callback)

Set callback function for the receive packet event.

Barrelfish Demultiplexer

16.29 libbfdmux/src/libbfdmux.c File Reference 183

Parameters:

callback Function pointer to a receive-data handler

Definition at line 537 of file libbfdmux.c.

Here is the caller graph for this function:

bfdmux_set_recv_callback register_app main

16.29.3.6 err_t detach (filterid_t filter_id)

Detach application from a previous attached filter with ID ’filter_id’.

Parameters:

filter_id Filter ID of a previous attached filter

Returns:

OK on success, ERR otherwise.

Definition at line 384 of file libbfdmux.c.

Here is the call graph for this function:

detach

bfdmux_ci_send

cmd_check

recv_answer

Here is the caller graph for this function:

detach

get_new_filter

quit

main

16.29.3.7 int recv_answer (void ∗∗ buffpt)

Busy wait to wait for the answer of a sent command.

Parameters:

→ buffpt This pointer will point to the answer command

bfdmux

184 File Documentation

Returns:

Size of answer command

Definition at line 549 of file libbfdmux.c.

Here is the caller graph for this function:

recv_answer attach

bfdmux_send

detach

register_app

unregister_app

get_new_filter

main

main

quit

16.29.3.8 err_t register_app (void(∗)(void ∗, size_t, filterid_t) recv_callback,
void ∗∗ sm_inpt, void ∗∗ sm_outpt, size_t size_in, size_t size_out)

Register application at bfdmux.

Starts thread to handle incoming commands, sets up shared memory of specified size,
connects to and registers with bfdmux via Unix socket

Parameters:

recv_callback pointer to callback function for handling incoming data

→ sm_inpt pointer to a pointer to the incoming packet buffer (will be set on suc-
cess)

→ sm_outpt pointer to a pointer to the outgoing packet buffer (will be set on suc-
cess)

size_in desired size of inbound buffer

size_out desired size of outbound buffer

Returns:

OK on success, otherwise ERR.

Definition at line 105 of file libbfdmux.c.

Barrelfish Demultiplexer

16.29 libbfdmux/src/libbfdmux.c File Reference 185

Here is the call graph for this function:

register_app

bfdmux_ci_send

bfdmux_set_recv_callback

cmd_check

recv_answer

server_thread_start

Here is the caller graph for this function:

register_app main

16.29.3.9 void∗ server_thread (void ∗ ptr)

Server thread function.

The server thread waits for incoming commands or answers from bfdmux and handles
them separately.

Parameters:

ptr NULL

Returns:

NULL

16.29.3.10 err_t unregister_app (void)

Deregister application from bfdmux.

Deregisters from bfdmux, detaches shared memory and then closes command socket

Returns:

Returns OK if successful, otherwise ERR

Definition at line 252 of file libbfdmux.c.

bfdmux

186 File Documentation

Here is the call graph for this function:

unregister_app

bfdmux_ci_send

cmd_check

recv_answer

Here is the caller graph for this function:

unregister_app quit

16.29.4 Variable Documentation

16.29.4.1 pthread_t server_thread_descriptor

Server thread descriptor.

This thread listens for incoming commands from bfdmux on the command interface.

Definition at line 64 of file libbfdmux.c.

Barrelfish Demultiplexer

16.30 libbfdmux/src/rwlock.c File Reference 187

16.30 libbfdmux/src/rwlock.c File Reference

Read write lock.

Include dependency graph for rwlock.c:

libbfdmux/src/rwlock.c

rwlock.h bfdmux.h

debug.h

Functions

• int rwlock_create (void)
Create a read/write lock handle.

• bool rwlock_destroy (int sid)
Destroy a previous created read/write lock.

• bool rwlock_acquire (int sid, bool write)
Acquire rights (read-write or read-only) on an existing lock.

• bool rwlock_elevate (int sid)
Elevate a read-only lock to a read-write lock.

• bool rwlock_try_acquire (int sid, bool write)
Try to acquire rights (read-write or read-only) on an existing lock.

• bool rwlock_release (int sid, bool write)
Release a previous acquired right on a read/write lock.

• bool rwlock_lower (int sid)
Lower the permission on a read/write lock.

16.30.1 Detailed Description

Read write lock.

Read/write lock using semaphore, built after example from
http://www.experts-exchange.com/Programming/Languages/C/Q_-
23939132.html

Definition in file rwlock.c.

bfdmux

http://www.experts-exchange.com/Programming/Languages/C/Q_23939132.html
http://www.experts-exchange.com/Programming/Languages/C/Q_23939132.html

188 File Documentation

16.30.2 Function Documentation

16.30.2.1 bool rwlock_acquire (int sid, bool write)

Acquire rights (read-write or read-only) on an existing lock.

Acquire a read-write or a read-only right on a previous created read/write lock. This
function call is blocking and will return only after successfully acquiring the asked
right or on error.

Parameters:

sid Read/write lock id
write Boolean argument to choose between a read-write lock (true) or a read-only

lock (false)

Returns:

True on success, false otherwise.

Definition at line 79 of file rwlock.c.

Here is the caller graph for this function:

rwlock_acquire

check_demuxer_idle_and_lock

mainclose_server

new_packet_event

run

wait_for_new_packet_and_lock

demux signal_handler init_nic_interface

quit psend2bfdmux main

16.30.2.2 int rwlock_create (void)

Create a read/write lock handle.

Returns:

Read/write lock handle on success, -1 otherwise.

Definition at line 26 of file rwlock.c.

Here is the caller graph for this function:

rwlock_create

init_app_register

main

initialize_server

Barrelfish Demultiplexer

16.30 libbfdmux/src/rwlock.c File Reference 189

16.30.2.3 bool rwlock_destroy (int sid)

Destroy a previous created read/write lock.

Parameters:

sid Previous created read/write lock that should get destroyed

Returns:

True on success, false otherwise.

Definition at line 61 of file rwlock.c.

Here is the caller graph for this function:

rwlock_destroy

destroy_app_register

quit

close_server main

psend2bfdmux

16.30.2.4 bool rwlock_elevate (int sid)

Elevate a read-only lock to a read-write lock.

Elevate the right on lock from read-only to read-write. This function is blocking and
will return only after successfully elevating the read/write lock or after an error.

Parameters:

sid Read/write lock ID to elevate the rights on

Returns:

True on success, false otherwise.

Definition at line 126 of file rwlock.c.

Here is the caller graph for this function:

rwlock_elevate

new_client_event

run

new_message_event

main

16.30.2.5 bool rwlock_lower (int sid)

Lower the permission on a read/write lock.

bfdmux

190 File Documentation

This function lowers the permission on a read/write lock from read-write to read-only.
To completely remove the read/write lock use rwlock_release().

Parameters:

sid Read/write lock id

Returns:

True on success, false otherwise.

Definition at line 251 of file rwlock.c.

Here is the caller graph for this function:

rwlock_lower

new_client_event

run

new_message_event

main

16.30.2.6 bool rwlock_release (int sid, bool write)

Release a previous acquired right on a read/write lock.

Release a read/write lock. To lower the right from read-write to read-only don’t use
this function, use rwlock_lower(). This function completely releases the read/write
lock.

Parameters:

sid Read/write lock id

write Boolean argument specifying if this read/write lock has read-write (true) or
read-only (false) permissions.

Returns:

True on success, false otherwise.

Definition at line 209 of file rwlock.c.

Barrelfish Demultiplexer

16.30 libbfdmux/src/rwlock.c File Reference 191

Here is the caller graph for this function:

rwlock_release

check_demuxer_idle_and_lock

demux

main

close_server

new_packet_event

run

wait_for_new_packet_and_lock

signal_handler init_nic_interface

quit

psend2bfdmux main

16.30.2.7 bool rwlock_try_acquire (int sid, bool write)

Try to acquire rights (read-write or read-only) on an existing lock.

Acquire a read-write or a read-only right on a previous created read/write lock. This
function call is non-blocking and will return immediately.

Parameters:

sid Read/write lock id

write Boolean argument to choose between a read-write lock (true) or a read-only
lock (false)

Returns:

True on success, false otherwise.

Definition at line 167 of file rwlock.c.

bfdmux

192 File Documentation

16.31 libbfdmux/src/tools.c File Reference

Helper functoin and additional tools used by libbfdmux.

Include dependency graph for tools.c:

libbfdmux/src/tools.c

tools.h

bfdmux.h

debug.h

Functions

• int find_msb (uint64_t value)
Finds the index of the most significant 1-bit in ’value’.

• char ∗ get_error_position_string (int pos)
Returns a string with pos-1 spaces and a ’∧’ character. Used to indicate error position
in filter string!

• uint8_t ∗ parse_hex_input (char ∗str)
Parses a string consisting of hex digits to a byte array.

• char ∗ build_ipv4_filter (addr_t srcip, addr_t dstip)
IPv4 filter template.

• char ∗ build_tcp_filter (port_t srcport, port_t dstport)
TCP filter template.

• char ∗ build_udp_filter (port_t srcport, port_t dstport)
UDP filter template.

• char ∗ build_ipv4_tcp_filter (addr_t srcip, addr_t dstip, port_t srcport, port_-
t dstport)

TCP over IPv4 filter template.

• char ∗ build_ipv4_udp_filter (addr_t srcip, addr_t dstip, port_t srcport, port_t
dstport)

UDP over IPv4 filter template.

Barrelfish Demultiplexer

16.31 libbfdmux/src/tools.c File Reference 193

16.31.1 Detailed Description

Helper functoin and additional tools used by libbfdmux.

Definition in file tools.c.

16.31.2 Function Documentation

16.31.2.1 char∗ build_ipv4_filter (addr_t srcip, addr_t dstip)

IPv4 filter template.

Create an IPv4 filter based on a source IP and a destination IP. The source IP is a 32bit
field in the IPv4 header starting at offset 12Bytes, the destination IP is also a 32bit field
starting at 16Bytes.

Parameters:

srcip Filter packets coming from this source IP (IP_ADDR_ANY for any source)

dstip Filter packets going to this destination IP (IP_ADDR_ANY for any target)

Returns:

A filter string. Caller has to free it after use.

Definition at line 154 of file tools.c.

Here is the caller graph for this function:

build_ipv4_filter

build_ipv4_tcp_filter

build_ipv4_udp_filter

16.31.2.2 char∗ build_ipv4_tcp_filter (addr_t srcip, addr_t dstip, port_t
srcport, port_t dstport)

TCP over IPv4 filter template.

This function build a TCP over IPv4 filter based on the given arguments using the
build_tcp_filter and build_ipv4_filter helper functions.

Parameters:

srcip Source IP-Address to filter for (IP_ADDR_ANY for any)

dstip Destination IP-Address to filter for (IP_ADDR_ANY for any)

srcport Source TCP port to filter for (PORT_ANY for any)

dstport Destination TCP port to filter for (PORT_ANY for any)

bfdmux

194 File Documentation

Returns:

A filter string. Caller has to free it after use.

Definition at line 255 of file tools.c.

Here is the call graph for this function:

build_ipv4_tcp_filter

build_ipv4_filter

build_tcp_filter

16.31.2.3 char∗ build_ipv4_udp_filter (addr_t srcip, addr_t dstip, port_t
srcport, port_t dstport)

UDP over IPv4 filter template.

This function build a UDP over IPv4 filter based on the given arguments using the
build_tcp_filter and build_ipv4_filter helper functions.

Parameters:

srcip Source IP-Address to filter for (IP_ADDR_ANY for any)

dstip Destination IP-Address to filter for (IP_ADDR_ANY for any)

srcport Source UDP port to filter for (PORT_ANY for any)

dstport Destination UDP port to filter for (PORT_ANY for any)

Returns:

A filter string. Caller has to free it after use.

Definition at line 286 of file tools.c.

Here is the call graph for this function:

build_ipv4_udp_filter

build_ipv4_filter

build_udp_filter

16.31.2.4 char∗ build_tcp_filter (port_t srcport, port_t dstport)

TCP filter template.

Create a TCP filter based on the source and destination TCP Port. This filter looks for
the TCP protocol number (0x06) in the IP header and sets the 16bit long source port
field positioned at offset 20Bytes (with IP header) and the 16bit long destination port
filed positioned at offset 22Bytes to the given arguments.

Barrelfish Demultiplexer

16.31 libbfdmux/src/tools.c File Reference 195

Parameters:

srcport TCP source port to filter on (PORT_ANY for any port)

dstport TCP destination port to filter on (PORT_ANY for any port)

Returns:

A filter sting. Caller has to free it after use.

Definition at line 192 of file tools.c.

Here is the caller graph for this function:

build_tcp_filter build_ipv4_tcp_filter

16.31.2.5 char∗ build_udp_filter (port_t srcport, port_t dstport)

UDP filter template.

Create a UDP filter based on the source and destination UDP Port. This filter looks for
the UDP protocol number (0x11) in the IP header and sets the 16bit long source port
field positioned at offset 20Bytes (with IP header) and the 16bit long destination port
filed positioned at offset 22Bytes to the given arguments.

Parameters:

srcport UDP source port to filter on (PORT_ANY for any port)

dstport UDP destination port to filter on (PORT_ANY for any port)

Returns:

A filter sting. Caller has to free it after use.

Definition at line 226 of file tools.c.

Here is the caller graph for this function:

build_udp_filter build_ipv4_udp_filter

16.31.2.6 int find_msb (uint64_t value) [inline]

Finds the index of the most significant 1-bit in ’value’.

Parameters:

value The integer to be analyzed

bfdmux

196 File Documentation

Returns:

The index of the most significant 1-bit in value (bits numbered 1..64); 0 if value =
0.

Definition at line 23 of file tools.c.

Here is the caller graph for this function:

find_msb compile_subtree compile_filter new_message_event run

16.31.2.7 char∗ get_error_position_string (int pos)

Returns a string with pos-1 spaces and a ’∧’ character. Used to indicate error position
in filter string!

Parameters:

pos The position to point at

Returns:

A string with a ’∧’ character at the given position. Caller should free memory after
use!

Definition at line 88 of file tools.c.

Here is the caller graph for this function:

get_error_position_string new_message_event run main

16.31.2.8 uint8_t∗ parse_hex_input (char ∗ str)

Parses a string consisting of hex digits to a byte array.

Parameters:

str The string to be parsed, e.g. "fe01abc9"

Returns:

A byte array, e.g. 0xfe 0x01 0xab 0xc9. Caller should free the array after use!

Definition at line 107 of file tools.c.

Barrelfish Demultiplexer

Index

add_app
register.c, 123
register.h, 105

add_filter
register.c, 123
register.h, 106

attach
libbfdmux.c, 180
libbfdmux.h, 164

bfdmux.c
check_demuxer_idle_and_lock, 77
demux, 77
main, 78
queue, 80
queue_first, 80
quit, 79
server_thread, 81
wait_for_new_packet_and_lock, 80

bfdmux.h
demux, 154

bfdmux/ Directory Reference, 41
bfdmux/src/ Directory Reference, 56
bfdmux/src/bfdmux.c, 75
bfdmux/src/codegen.c, 82
bfdmux/src/filter.c, 87
bfdmux/src/include/ Directory Reference,

47
bfdmux/src/include/codegen.h, 90
bfdmux/src/include/filter.h, 93
bfdmux/src/include/netif.h, 98
bfdmux/src/include/netif/ Directory Ref-

erence, 51
bfdmux/src/include/netif/mqif.h, 101
bfdmux/src/include/opdefs.h, 102
bfdmux/src/include/register.h, 104
bfdmux/src/include/server.h, 109
bfdmux/src/include/vm.h, 113
bfdmux/src/netif/ Directory Reference, 50
bfdmux/src/netif/mqif.c, 115
bfdmux/src/opdefs.c, 119

bfdmux/src/register.c, 122
bfdmux/src/server.c, 126
bfdmux/src/vm.c, 134
bfdmux_ci_recv

libbfdmux.c, 181
bfdmux_ci_send

libbfdmux.c, 181
bfdmux_ciprot.c

cmd_check, 149
cmd_get, 150
cmd_get_size, 150

bfdmux_ciprot.h
cmd_check, 158
cmd_get, 159
CMD_GET_IP_LIST, 157
CMD_GET_IP_LIST_ANSWER,

158
cmd_get_size, 159
CMD_RECV, 158

bfdmux_send
libbfdmux.c, 182
libbfdmux.h, 164

bfdmux_set_recv_callback
libbfdmux.c, 182
libbfdmux.h, 165

bfdmuxchat.c
main, 137
new_msg, 138
quit, 138

bfdmuxinject.c
main, 143
pprint, 143
psend2bfdmux, 143

bfdmuxsniff.c
new_msg, 146
printicmpinfo, 146
printipv4info, 146
printtcpinfo, 147
printudpinfo, 147

buf_in
client_app, 58

198 INDEX

buf_out
client_app, 58

build_ipv4_filter
tools.c, 193
tools.h, 174

build_ipv4_tcp_filter
tools.c, 193
tools.h, 174

build_ipv4_udp_filter
tools.c, 194
tools.h, 175

build_tcp_filter
tools.c, 194
tools.h, 175

build_udp_filter
tools.c, 195
tools.h, 176

calc
vm.c, 135

can_receive
client_app, 58

check_demuxer_idle_and_lock
bfdmux.c, 77

client_app, 57
buf_in, 58
buf_out, 58
can_receive, 58
filters, 58

close_nic_interface
mqif.c, 116
netif.h, 98

close_server
server.c, 127
server.h, 110

cmd_attach, 59
cmd_attach_answer, 60

filter_id, 60
cmd_check

bfdmux_ciprot.c, 149
bfdmux_ciprot.h, 158

cmd_detach, 61
cmd_detach_answer, 62
cmd_error, 63
cmd_get

bfdmux_ciprot.c, 150
bfdmux_ciprot.h, 159

CMD_GET_IP_LIST
bfdmux_ciprot.h, 157

CMD_GET_IP_LIST_ANSWER

bfdmux_ciprot.h, 158
cmd_get_size

bfdmux_ciprot.c, 150
bfdmux_ciprot.h, 159

CMD_RECV
bfdmux_ciprot.h, 158

cmd_recv, 64
cmd_recv_answer, 65
cmd_register, 66
cmd_register_answer, 67
cmd_send, 68
cmd_send_answer, 69
cmd_unregister, 70
cmd_unregister_answer, 71
codegen.c

compile_filter, 83
compile_subtree, 83
ensure_enough_space, 84
find_operator, 85
remove_spaces_and_braces, 85
substrfind, 86

codegen.h
compile_filter, 91
INCREMENTAL_ALLOC_SIZE,

91
INITIAL_ALLOC_SIZE, 91
MAX_FILTER_CODE_SIZE, 91

compile_filter
codegen.c, 83
codegen.h, 91

compile_subtree
codegen.c, 83

debug.h
DEBUG_LEVEL, 161
PDEBUG_RAW, 162

DEBUG_LEVEL
debug.h, 161

demux
bfdmux.c, 77
bfdmux.h, 154

detach
libbfdmux.c, 183
libbfdmux.h, 165

doc/ Directory Reference, 45

ensure_enough_space
codegen.c, 84

execute_filter
vm.c, 135

Barrelfish Demultiplexer

INDEX 199

vm.h, 114

filter, 72
filter.c

get_receipient_list, 88
new_packet_event, 88

filter.h
get_receipient_list, 96
new_packet_event, 97
OP_AND, 95
OP_OR, 96

filter_id
cmd_attach_answer, 60

filters
client_app, 58

find_app_in_table
register.c, 124
register.h, 106

find_msb
tools.c, 195
tools.h, 176

find_operator
codegen.c, 85

forward_packet_to_client
server.c, 128
server.h, 110

get_error_position_string
tools.c, 196
tools.h, 177

get_receipient_list
filter.c, 88
filter.h, 96

INCREMENTAL_ALLOC_SIZE
codegen.h, 91

init_nic_interface
mqif.c, 117
netif.h, 99

INITIAL_ALLOC_SIZE
codegen.h, 91

initialize_server
server.c, 128
server.h, 111

libbfdmux.c
attach, 180
bfdmux_ci_recv, 181
bfdmux_ci_send, 181
bfdmux_send, 182

bfdmux_set_recv_callback, 182
detach, 183
MQ_FLAG, 180
recv_answer, 183
register_app, 184
server_thread, 185
server_thread_descriptor, 186
unregister_app, 185

libbfdmux.h
attach, 164
bfdmux_send, 164
bfdmux_set_recv_callback, 165
detach, 165
register_app, 166
unregister_app, 167

libbfdmux/ Directory Reference, 48
libbfdmux/bfdmuxchat/ Directory Refer-

ence, 42
libbfdmux/bfdmuxchat/bfdmuxchat.c,

137
libbfdmux/bfdmuxchat/msgq_loopback/

Directory Reference, 49
libbfdmux/bfdmuxchat/msgq_-

loopback/src/ Directory
Reference, 55

libbfdmux/bfdmuxchat/msgq_-
loopback/src/msgq_clear.c,
140

libbfdmux/bfdmuxchat/msgq_-
loopback/src/msgq_loopback.c,
141

libbfdmux/bfdmuxsniff/ Directory Refer-
ence, 44

libbfdmux/bfdmuxsniff/bfdmuxinject/
Directory Reference, 43

libbfdmux/bfdmuxsniff/bfdmuxinject/src/
Directory Reference, 54

libbfdmux/bfdmuxsniff/bfdmuxinject/src/bfdmuxinject.c,
142

libbfdmux/bfdmuxsniff/src/ Directory
Reference, 53

libbfdmux/bfdmuxsniff/src/bfdmuxsniff.c,
145

libbfdmux/src/ Directory Reference, 52
libbfdmux/src/bfdmux_ciprot.c, 149
libbfdmux/src/include/ Directory Refer-

ence, 46
libbfdmux/src/include/bfdmux.h, 152
libbfdmux/src/include/bfdmux_ciprot.h,

155

bfdmux

200 INDEX

libbfdmux/src/include/debug.h, 161
libbfdmux/src/include/libbfdmux.h, 163
libbfdmux/src/include/rwlock.h, 168
libbfdmux/src/include/tools.h, 173
libbfdmux/src/libbfdmux.c, 178
libbfdmux/src/rwlock.c, 187
libbfdmux/src/tools.c, 192

main
bfdmux.c, 78
bfdmuxchat.c, 137
bfdmuxinject.c, 143

MAX_FILTER_CODE_SIZE
codegen.h, 91

MQ_FLAG
libbfdmux.c, 180

mqif.c
close_nic_interface, 116
init_nic_interface, 117
nic_send, 117
NUM_BUFS, 116
signal_handler, 118

netif.h
close_nic_interface, 98
init_nic_interface, 99
nic_send, 99

new_client_event
server.c, 129

new_message_event
server.c, 129

new_msg
bfdmuxchat.c, 138
bfdmuxsniff.c, 146

new_packet_event
filter.c, 88
filter.h, 97

nic_message_buf, 73
nic_send

mqif.c, 117
netif.h, 99

NUM_BUFS
mqif.c, 116

OP_AND
filter.h, 95

op_def_t, 74
op_list

opdefs.c, 119
opdefs.h, 103

OP_OR
filter.h, 96

opdefs.c
op_list, 119

opdefs.h
op_list, 103

parse_hex_input
tools.c, 196
tools.h, 177

PDEBUG_RAW
debug.h, 162

pprint
bfdmuxinject.c, 143

printicmpinfo
bfdmuxsniff.c, 146

printipv4info
bfdmuxsniff.c, 146

printtcpinfo
bfdmuxsniff.c, 147

printudpinfo
bfdmuxsniff.c, 147

psend2bfdmux
bfdmuxinject.c, 143

queue
bfdmux.c, 80

queue_first
bfdmux.c, 80

quit
bfdmux.c, 79
bfdmuxchat.c, 138

read_bytes
server.c, 130

recv_answer
libbfdmux.c, 183

register.c
add_app, 123
add_filter, 123
find_app_in_table, 124
remove_app, 125
remove_filter, 125

register.h
add_app, 105
add_filter, 106
find_app_in_table, 106
remove_app, 107
remove_filter, 107

register_app

Barrelfish Demultiplexer

INDEX 201

libbfdmux.c, 184
libbfdmux.h, 166

remove_app
register.c, 125
register.h, 107

remove_filter
register.c, 125
register.h, 107

remove_spaces_and_braces
codegen.c, 85

run
server.c, 131
server.h, 111

rwlock.c
rwlock_acquire, 188
rwlock_create, 188
rwlock_destroy, 189
rwlock_elevate, 189
rwlock_lower, 189
rwlock_release, 190
rwlock_try_acquire, 191

rwlock.h
rwlock_acquire, 168
rwlock_create, 169
rwlock_destroy, 169
rwlock_elevate, 170
rwlock_lower, 170
rwlock_release, 171
rwlock_try_acquire, 172

rwlock_acquire
rwlock.c, 188
rwlock.h, 168

rwlock_create
rwlock.c, 188
rwlock.h, 169

rwlock_destroy
rwlock.c, 189
rwlock.h, 169

rwlock_elevate
rwlock.c, 189
rwlock.h, 170

rwlock_lower
rwlock.c, 189
rwlock.h, 170

rwlock_release
rwlock.c, 190
rwlock.h, 171

rwlock_try_acquire
rwlock.c, 191
rwlock.h, 172

server.c
close_server, 127
forward_packet_to_client, 128
initialize_server, 128
new_client_event, 129
new_message_event, 129
read_bytes, 130
run, 131
sighandler, 132
write_bytes, 132

server.h
close_server, 110
forward_packet_to_client, 110
initialize_server, 111
run, 111

server_thread
bfdmux.c, 81
libbfdmux.c, 185

server_thread_descriptor
libbfdmux.c, 186

sighandler
server.c, 132

signal_handler
mqif.c, 118

substrfind
codegen.c, 86

tools.c
build_ipv4_filter, 193
build_ipv4_tcp_filter, 193
build_ipv4_udp_filter, 194
build_tcp_filter, 194
build_udp_filter, 195
find_msb, 195
get_error_position_string, 196
parse_hex_input, 196

tools.h
build_ipv4_filter, 174
build_ipv4_tcp_filter, 174
build_ipv4_udp_filter, 175
build_tcp_filter, 175
build_udp_filter, 176
find_msb, 176
get_error_position_string, 177
parse_hex_input, 177

unregister_app
libbfdmux.c, 185
libbfdmux.h, 167

vm.c

bfdmux

202 INDEX

calc, 135
execute_filter, 135

vm.h
execute_filter, 114

wait_for_new_packet_and_lock
bfdmux.c, 80

write_bytes
server.c, 132

Barrelfish Demultiplexer

	Barrelfish demultiplexer - bfdmux
	Introduction
	Documentation

	Bfdmux Filter Language
	Operators
	Arithmetic
	Comparison
	Logical
	Bitwise
	Packet access
	Examples
	Operator precedence

	Bfdmux development manual
	Communication concept
	Important data fields
	Functional overview
	Event overview

	Bfdmux network interface manual
	a new network interface
	incoming data to bfdmux

	Libbfdmux application developer manual
	Building libbfdmux
	Binding your application together with libbfdmux
	Interface to bfdmux
	Managing debug output

	Storage of filter code
	General
	Op-Codes

	Libbfdmux design
	Client interface protocol
	Command packets
	Command channel
	Data channel
	Read-write locks
	Helper functions

	Libbfdmux internal development manual
	Adding a command to libbfdmux

	Sample libbfdmux applications
	Overview
	Bfdmuxchat
	Bfdmuxsniff
	Message Queue Loopback

	Todo List
	Directory Hierarchy
	Directories

	Data Structure Index
	Data Structures

	File Index
	File List

	Directory Documentation
	bfdmux/ Directory Reference
	libbfdmux/bfdmuxchat/ Directory Reference
	libbfdmux/bfdmuxsniff/bfdmuxinject/ Directory Reference
	libbfdmux/bfdmuxsniff/ Directory Reference
	doc/ Directory Reference
	libbfdmux/src/include/ Directory Reference
	bfdmux/src/include/ Directory Reference
	libbfdmux/ Directory Reference
	libbfdmux/bfdmuxchat/msgq_loopback/ Directory Reference
	bfdmux/src/netif/ Directory Reference
	bfdmux/src/include/netif/ Directory Reference
	libbfdmux/src/ Directory Reference
	libbfdmux/bfdmuxsniff/src/ Directory Reference
	libbfdmux/bfdmuxsniff/bfdmuxinject/src/ Directory Reference
	libbfdmux/bfdmuxchat/msgq_loopback/src/ Directory Reference
	bfdmux/src/ Directory Reference

	Data Structure Documentation
	client_app Struct Reference
	cmd_attach Struct Reference
	cmd_attach_answer Struct Reference
	cmd_detach Struct Reference
	cmd_detach_answer Struct Reference
	cmd_error Struct Reference
	cmd_recv Struct Reference
	cmd_recv_answer Struct Reference
	cmd_register Struct Reference
	cmd_register_answer Struct Reference
	cmd_send Struct Reference
	cmd_send_answer Struct Reference
	cmd_unregister Struct Reference
	cmd_unregister_answer Struct Reference
	filter Struct Reference
	nic_message_buf Struct Reference
	op_def_t Struct Reference

	File Documentation
	bfdmux/src/bfdmux.c File Reference
	bfdmux/src/codegen.c File Reference
	bfdmux/src/filter.c File Reference
	bfdmux/src/include/codegen.h File Reference
	bfdmux/src/include/filter.h File Reference
	bfdmux/src/include/netif.h File Reference
	bfdmux/src/include/netif/mqif.h File Reference
	bfdmux/src/include/opdefs.h File Reference
	bfdmux/src/include/register.h File Reference
	bfdmux/src/include/server.h File Reference
	bfdmux/src/include/vm.h File Reference
	bfdmux/src/netif/mqif.c File Reference
	bfdmux/src/opdefs.c File Reference
	bfdmux/src/register.c File Reference
	bfdmux/src/server.c File Reference
	bfdmux/src/vm.c File Reference
	libbfdmux/bfdmuxchat/bfdmuxchat.c File Reference
	libbfdmux/bfdmuxchat/msgq_loopback/src/msgq_clear.c File Reference
	libbfdmux/bfdmuxchat/msgq_loopback/src/msgq_loopback.c File Reference
	libbfdmux/bfdmuxsniff/bfdmuxinject/src/bfdmuxinject.c File Reference
	libbfdmux/bfdmuxsniff/src/bfdmuxsniff.c File Reference
	libbfdmux/src/bfdmux_ciprot.c File Reference
	libbfdmux/src/include/bfdmux.h File Reference
	libbfdmux/src/include/bfdmux_ciprot.h File Reference
	libbfdmux/src/include/debug.h File Reference
	libbfdmux/src/include/libbfdmux.h File Reference
	libbfdmux/src/include/rwlock.h File Reference
	libbfdmux/src/include/tools.h File Reference
	libbfdmux/src/libbfdmux.c File Reference
	libbfdmux/src/rwlock.c File Reference
	libbfdmux/src/tools.c File Reference

